
Information Integration

Version 9.1

SQL Reference for Classic Federation and Classic Data Event Publishing

SC19-1128-00

���

Information Integration

Version 9.1

SQL Reference for Classic Federation and Classic Data Event Publishing

SC19-1128-00

���

Note

Before using this information and the product that it supports, read the information in “Notices” on page 85.

© Copyright International Business Machines Corporation 2007. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Chapter 1. General information 1

Language elements 1

Characters 1

Tokens 1

SQL statement format 3

SQL identifiers 3

Naming conventions 6

Authorization IDs and authorization names . . . 7

Qualification of unqualified object names 8

Data types 9

Constants 12

General syntax diagrams 13

DROP statement 13

COMMENT ON statement 15

Chapter 2. IMS 17

CREATE TABLE statement for IMS 17

Columns for IMS 24

Record arrays for IMS 31

CREATE INDEX statement for IMS 34

ALTER TABLE statement for IMS 37

Chapter 3. VSAM 39

CREATE TABLE statement for VSAM 39

Columns for VSAM 48

Record arrays for VSAM 55

CREATE INDEX statement for VSAM 58

ALTER TABLE statement for VSAM 60

Chapter 4. SQL security 63

Overview of SQL security 63

Authorization 63

Authorization requirements for SQL statements . . 64

Database objects in SQL security 65

Defining user privileges 65

System privileges 66

Database privileges 67

Stored procedure privileges 69

Table and view privileges 70

SAF and SMF system exits for SQL security . . . 72

Chapter 5. Views 75

Record types and COBOL example 75

Views and the query processor in Classic federation 78

Advantages and disadvantages of views in Classic

federation 78

Joined views in Classic federation 78

CREATE VIEW statement 79

ALTER VIEW statement 80

DROP VIEW statement 81

Accessing information about IBM . . . 83

Providing comments on the documentation 83

Notices 85

Trademarks 87

Index 89

© Copyright IBM Corp. 2007 iii

iv SQL Reference for Classic Federation and Classic Data Event Publishing

Chapter 1. General information

You can use the following language elements and syntax diagrams for any of the

supported database management systems.

Language elements

The SQL language elements are characters, tokens, SQL statement format,

identifiers, naming conventions, authorization IDs, authorization names,

qualification of unqualified object names, data types, and constants.

The following topics apply only to the DDL SQL statements for dynamic catalog

update operations and to DML SQL statements. See the DB2® SQL reference

documentation for the full set of language elements.

Characters

The basic symbols of SQL are characters from the EBCDIC syntactic character set.

These characters are classified as letters, digits, or special characters:

letter Any one of the uppercase alphabetic characters A through Z plus the three

EBCDIC code points reserved as alphabetic extenders for national

languages (the code points X’5B’, X’7B’, and X’7C’, which display as $, #,

and @ in code pages 37 and 500).

digit Any one of the characters 0 through 9.

special character

Any character other than a letter or a digit.

SQL statements can also contain double-byte character set (DBCS) characters. You

can use double-byte characters in SQL ordinary identifiers and graphic string

constants when you enclose the necessary shift characters. You can also use

double-byte characters in string constants and delimited identifiers.

In SQL applications you must contain double-byte characters within a single line.

Therefore, you cannot continue a graphic string constant from one line to the next.

You can continue a character string constant and a delimited identifier from one

line to the next only if the break occurs between single-byte characters.

Tokens

The basic syntactical units of the language are called tokens. A token consists of

one or more characters, not including spaces, control characters, or characters

within a string constant or delimited identifier.

Tokens are classified as ordinary or delimiter tokens:

Ordinary token

A numeric constant, an ordinary identifier, a host identifier, or a keyword.

© Copyright IBM Corp. 2007 1

Delimiter token

A string constant, a delimited identifier, an operator symbol, or any of the

special characters shown in the syntax diagrams. A question mark (?) is

also a delimiter token when it serves as a parameter marker.

String constants and certain delimited identifiers are the only tokens that can

include a space or control character. Any token can be followed by a space or

control character. Every ordinary token must be followed by a delimiter token, a

space, or a control character. If the syntax does not allow a delimiter token, a space

or a control character must follow the ordinary token.

Spaces

A sequence of one or more blank characters. A space is represented as the

value x’40’.

Control characters

A special character for string alignment. A control character is treated like a

space and does not cause a particular action to occur. The following table

identifies the control characters that are supported.

 Table 1. Control characters

Name of control character Hexadecimal value

Tab 05

Form feed 0C

Carriage return 0D

New line or next line 15

Line feed (new line) 25

Uppercase and lowercase

Any token can include lowercase letters, but a lowercase letter in an

ordinary token is folded to uppercase. Delimiter tokens are never folded to

uppercase.

 For example, the first statement is equivalent to the second statement, after

folding:

select * from DSN8710.EMP where lastname = ’Smith’;

SELECT * FROM DSN8710.EMP WHERE LASTNAME = ’Smith’;

1

.1

+2

SELECT

E

3

Figure 1. Examples of ordinary tokens

,

’string’

"fld1"

=

.

Figure 2. Examples of delimiter tokens

2 SQL Reference for Classic Federation and Classic Data Event Publishing

SQL statement format

An SQL statement is a complete instruction to the database manager that is written

using Structured Query Language.

An SQL statement has a length attribute that identifies the physical length of the

SQL statement in bytes. Either the client application explicitly identifies the length

of the SQL statement, or the ODBC or JDBC driver determines the length of the

SQL statement.

Typically, the SQL statement ends with a null byte, which has a hexadecimal value

of zeros. In these cases, the length of the SQL statement is determined by scanning

the SQL statement and counting the number of bytes up to the null byte.

SQL identifiers

An identifier is a token that forms a name. An identifier in an SQL statement is an

SQL identifier, a parameter marker, or a native identifier. SQL identifiers can be

ordinary identifiers or delimited identifiers. They can also be short identifiers,

medium identifiers, or long identifiers.

An SQL identifier can be in one of these categories: short ordinary, medium

ordinary, long ordinary, short delimited, medium ordinary, or long delimited.

Ordinary identifiers

An ordinary identifier is a letter that is followed by zero or more

characters, each of which is a letter, a digit, or the underscore character. An

ordinary identifier with an EBCDIC encoding scheme can include Katakana

characters.

 Double byte character set (DBCS) characters are allowed in SQL ordinary

identifiers. You can specify an SQL ordinary identifier, when it is the name

of a table, column, view, or stored procedure, by using either DBCS

characters or single-byte character set (SBCS) characters. However, an SQL

ordinary identifier cannot contain a mixture of SBCS and DBCS characters.

 The following rules show how to form DBCS SQL ordinary identifiers.

These rules are EBCDIC rules because all SQL statements are in EBCDIC.

v The identifier must start with a shift-out (X’0E’) and end with a shift-in

(X’0F’). An odd-numbered byte between those shifts must not be a

shift-out.

v The maximum length is 8, 18, or 30 bytes including the shift-out and the

shift-in depending upon the context of the identifier. In other words,

there is a maximum of 28 bytes (14 double-byte characters) between the

shift-out and the shift-in.

v There must be an even number of bytes between the shift-out and the

shift-in. DBCS blanks (X’4040’) are not acceptable between the shift-out

and the shift-in.

v The identifiers are not folded to uppercase or changed in any other way.

v Continuation to the next line is not allowed.

An ordinary identifier must not be identical to a keyword that is a

reserved word in any context in which the identifier is used.

 The following example is an ordinary identifier:

SALARY

Chapter 1. General information 3

Delimited identifiers

A delimited identifier is a sequence of one or more characters that are

enclosed within escape characters. The escape character is the quotation

mark (″).

 You can use a delimited identifier when the sequence of characters does

not qualify as an ordinary identifier. Such a sequence, for example, can be

an SQL reserved word, or it can begin with a digit. Two consecutive escape

characters represent one escape character within the delimited identifier. A

delimited identifier that contains double-byte characters also must contain

the necessary shift characters.

 When the escape character is the quotation mark, the following example is

a delimited identifier:

"VIEW"

Short, medium, and long identifiers

SQL identifiers are also classified according to their maximum length. A

long identifier has a maximum length of 30 bytes. A medium identifier has

a maximum length of 18 bytes. A short identifier has a maximum length of

8 bytes. These limits do not include the escape characters of a delimited

identifier.

 Whether an identifier is long, medium, or short depends on what it

represents.

Parameter marker

Parameter markers represent values that are supplied for the SQL

statement when it is run. The question mark (?) identifies a parameter

marker in an SQL statement.

Native identifiers

Native identifiers exist only in CREATE TABLE and CREATE INDEX

statements and refer to a native database object. For example, objects can

be an MVS™ data set name, an IMS™ segment name, a CA-IDMS record

name, and so on. Native identifiers can be ordinary or delimited

identifiers. If the native identifier represents a reserved word, then you

must supply a delimited identifier.

 The length and allowable characters in a native identifier are

DBMS-specific.

Reserved words

A number of words cannot be used as ordinary identifiers in some contexts

because these words might be interpreted as SQL keywords.

For example, ALL cannot be a column name in a SELECT statement. Each word,

however, can be a delimited identifier in contexts where the word otherwise

cannot be an ordinary identifier. For example, the quotation mark (″) is the escape

character that begins and ends delimited identifiers. ″ALL″ can appear as a column

name in a SELECT statement.

You must use the following words as delimited identifiers where referring to an

SQL identifier or native identifier in any SQL statement:

ADD

ALL

ALTER

AND

ANY

AS

4 SQL Reference for Classic Federation and Classic Data Event Publishing

AUDIT

BETWEEN

BIND

BUFFERPOOL

BY

CALL

CAPTURE

CHAR

CHARACTER

CHECK

CLUSTER

COLLECTION

COLUMN

CONCAT

CONSTRAINT

COUNT

CURRENT

CURRENT_DATE

CURRENT_TIME

CURRENT_TIMESTAMP

CURSOR

DATABASE

DAY

DAYS

DEFAULT

DELETE

DESCRIPTOR

DISTINCT

DOUBLE

DROP

EDITPROC

ERASE

ESCAPE

EXCEPT

EXECUTE

EXISTS

FIELDPROC

FOR

FROM

FULL

GO

GOTO

GRANT

GROUP

HAVING

HOUR

HOURS

IMMEDIATE

IN

INDEX

INNER

INOUT

INSERT

INTO

IS

JOIN

KEY

LEFT

LIKE

LOCKMAX

LOCKSIZE

MICROSECOND

MICROSECONDS

MINUTE

MINUTES

MONTH

MONTHS

Chapter 1. General information 5

NOT

NULL

NUMPARTS

OBID

OF

ON

OPTIMIZE

OR

ORDER

OUT

OUTER

PACKAGE

PART

PLAN

PRECISION

PRIQTY

PRIVILEGES

PROGRAM

REFERENCES

RIGHT

SECOND

SECONDS

SECQTY

SELECT

SET

SOME

STOGROUP

SUBPAGES

SYNONYM

TABLE

TABLESPACE

TO

UNION

UNIQUE

UPDATE

USER

USING

VALIDPROC

VALUES

VCAT

VIEW

VOLUMES

WHERE

WITH

YEAR

YEARS

Naming conventions

The rules for forming a name depend on the object type that is designated by the

name. The syntax diagrams use different terms for different types of names.

The following list defines terms that represent common SQL objects that are

referenced in the various DDL statements.

authorization-name

A short identifier that designates a set of privileges. It can also designate a

user or group of users.

column-name

A qualified or unqualified name that designates a column of a table or a

view.

 A qualified column name is a qualifier followed by a period and a long

identifier. The qualifier is a table name or a view name.

6 SQL Reference for Classic Federation and Classic Data Event Publishing

An unqualified column name is a long identifier.

index-name

A qualified or unqualified name that designates an index.

 A qualified index name is a short identifier followed by a period and a

medium identifier. The short identifier is the authorization ID that owns

the index.

 An unqualified index name is a medium identifier with an implicit

qualifier. The implicit qualifier is an authorization ID.

procedure-name

A qualified or unqualified name that designates a stored procedure.

 A fully qualified procedure name is a two-part name. The first part is the

authorization ID that designates the owner of the procedure. The second

part is a medium identifier. A period must separate each of the parts.

 A one-part or unqualified procedure name is a medium identifier with an

implicit qualifier. The implicit qualifier is an authorization ID.

schema-name

An SQL identifier that designates a schema. A schema name that is used as

a qualifier of that object name is often also an authorization ID. The objects

that are qualified with a schema name are stored procedures and tables.

table-name

A qualified or unqualified name that designates a table.

 A fully qualified table name is a two-part name. The first part is the

authorization ID that designates the owner of the table. The second part is

a medium identifier. A period must separate each of the parts.

 A one-part or unqualified table name is a medium identifier with an

implicit qualifier. The implicit qualifier is an authorization ID.

view-name

A qualified or unqualified name that designates a view.

 A fully qualified view name is a two-part name. The first part is the

authorization ID that designates the owner of the view. The second part is

a medium identifier. A period must separate each of the parts.

 A one-part or unqualified view name is a medium identifier with an

implicit qualifier. The implicit qualifier is an authorization ID.

Authorization IDs and authorization names

An authorization ID is a character string that designates a defined set of privileges.

Client connections can successfully run SQL statements only if client connections

have the authority to perform the specified functions. A client connection derives

this authority from its authorization IDs. An authorization ID can also designate a

user or a group of users, but federation does not control this property.

Authorization IDs provide this functionality:

v Authorization checking of SQL statements

v Implicit qualifiers for database objects like tables, views, and indexes

Chapter 1. General information 7

Connections and authorization IDs

Whenever a connection is established, an authorization ID is optionally passed to

the server. If an authorization ID is not supplied, the connection is assigned the

default authorization ID of PUBLIC. If external security is active by using the SAF

EXIT configuration parameter, then as part of connection authentication, the

authorization ID is passed to the SAF exit. If the authorization ID is allowed to

access the system, the SAF exit can return a secondary authorization ID that is in

the list of authorization IDs that are associated with the connection.

Every connection has exactly one primary authorization ID. All other IDs are

secondary authorization IDs. A connection can have a maximum of three

associated authorization IDs: the authorization ID on the connection request,

possibly one secondary authorization ID that is returned by the SAF exit, and the

generic authorization ID of PUBLIC.

An authorization name in an SQL statement is not the same as an authorization ID

of a connection.

Example

For example, assume that SMITH is the user ID that is supplied during the

connection, and you run the following statements:

CREATE TABLE TDEPT ...;

GRANT SELECT ON TDEPT TO KEENE;

When the GRANT statement is prepared and run, the SQL authorization ID is

SMITH. KEENE is an authorization name that is specified in the GRANT

statement.

Authorization to run the GRANT statement is checked against SMITH, and SMITH

is the implicit qualifier of TDEPT. The authorization rule is that the privilege set is

designated by SMITH must include the SELECT privilege with the GRANT option

on SMITH.TDEPT. There is no check involving KEENE.

If SMITH is the implicit qualifier for a statement that contains NAME1, then

NAME1 identifies the same object as SMITH.NAME1. If the implicit qualifier is

other than SMITH, then NAME1 and SMITH.NAME1 identify different objects.

Privileges

For statements other than an ALTER, CREATE, DROP, GRANT, or REVOKE

statement, each privilege that is required for the statement can be a privilege that

is designated by any authorization ID of the connection. Therefore, a privilege set

is the union of the set of privileges that are held by each authorization ID.

If the SQL statement is an ALTER, CREATE, DROP, GRANT, or REVOKE

statement, the only authorization ID for authorization checking is the SQL

authorization ID. Therefore, the privilege set is the privileges that are held by the

single authorization ID that corresponds to the user ID that is supplied on the

connection request.

Qualification of unqualified object names

Unqualified object names are implicitly qualified. The rules for qualifying a name

differ depending on the type of object that the name identifies.

8 SQL Reference for Classic Federation and Classic Data Event Publishing

The implicit qualifier for an unqualified index, table, or view name is the

authorization ID in the CURRENT SQLID special register. This authorization ID

corresponds to the user ID of the connected user that runs the SQL statement.

Data types

The smallest unit of data that can be manipulated in SQL is called a value. How

values are interpreted depends on the data type of their source.

The sources of values are as follows:

v Columns

v Constants

v Expressions

v Host variables

v Special registers

All data types include the null value. Distinct from all non-null values, the null

value is a special value that denotes the absence of a (non-null) value. Although all

data types include the null value, some sources of values cannot provide the null

value. For example, constants, columns that are defined as NOT NULL, and special

registers cannot contain null values. The COUNT function cannot return a null

value column as the result of a query.

Character string

A character string is a sequence of bytes. The length of the string is the number of

bytes in the sequence. If the length is zero, the value is an empty string. An empty

string is not the same thing as a null value.

The bytes of a character string can represent a mixture of characters from a

single-byte character set (SBCS) and a double-byte character set (DBCS). Strings

that might contain both SBCS and DBCS characters are called mixed data. EBCDIC

mixed data might contain shift characters, which do not represent SBCS or DBCS

data.

The following subtypes of character strings are supported:

Fixed-length character strings

All the values of a column with a fixed-length character-string data type

have the same length, which is determined by the length attribute of the

column. The length attribute must be between 1 and 255. Every

fixed-length string column is a short string column. A fixed-length

character-string column can also be called a CHAR or CHARACTER

column.

Varying-length character strings

All values of varying-length string columns have the same maximum

length, which is determined by the length attribute. If the length attribute

is greater than 254, the column is a long-string column. Long-string

columns cannot be referenced in these items:

v Function other than SUBSTR or LENGTH

v GROUP BY clause

v ORDER BY clause

v CREATE INDEX statement

v SELECT DISTINCT statement

v Subselect of a UNION without the ALL keyword

Chapter 1. General information 9

v Predicate other than LIKE

The VARCHAR column identifies a short, varying-length string column. A

maximum-length attribute must be specified, and must be between 1 and

32704. The VARCHAR(x) syntax is preferred over LONG VARCHAR,

which is a long-string column that does not have an explicit length

attribute. The maximum length is also 32704. However, a smaller

maximum length is explicitly specified or internally computed, based on

the maximum physical size limits.

Graphic strings

A graphic string is a sequence of DBCS characters. The length of the string is the

number of characters in the sequence. Each character is assumed to be two-bytes

long. Like character strings, graphic strings can be empty. An empty string is not

the same thing as a null value.

The following subtypes of character strings are supported:

Fixed-length graphic strings

All the values of a column with a fixed-length graphic-string data type

have the same length, which is determined by the length attribute of the

column. The length attribute must be between 1 and 127. Every

fixed-length graphic-string column is a short string column. A fixed-length,

graphic-string column can also be called a GRAPHIC column.

Varying-length graphic strings

All values of varying-length string columns have the same maximum

length, which is determined by the length attribute. If the length attribute

is greater than 127, the column is a long-string column, and the same rules

for LONG VARCHAR columns apply.

 The VARGRAPHIC column identifies a short, varying-length graphic-string

column, and a maximum-length attribute must be specified. The length

attribute must be between 1 and 127. A long-graphic-string column is

identified as a LONG VARGRAPHIC column and does not have an explicit

length attribute. The maximum length is 16352; however, a smaller

maximum length is explicitly specified or internally computed, based on

the maximum physical-size limits.

Numbers

The numeric data types are binary integer, floating-point, and decimal. Binary

integer includes small integer and large integer. Floating-point includes single

precision and double precision. Binary numbers are exact representations of

integers; decimal numbers are exact representations of real numbers; and

floating-point numbers are approximations of real numbers.

All numbers have a sign and a precision. When the value of a column or the result

of an expression is a decimal or floating-point zero, its sign is positive. The

precision of binary integers and decimal numbers is the total number of binary or

decimal digits excluding the sign. The precision of floating-point numbers is either

single or double, based on the number of hexadecimal digits in the fraction.

The types of numbers are as follows:

Small integer (SMALLINT)

A small integer is a binary integer with a precision of 15 bits. The range of

small integers is -32768 to +32767.

10 SQL Reference for Classic Federation and Classic Data Event Publishing

Large integer (INTEGER)

A large integer is a binary integer with a precision of 31 bits. The range of

large integers is -2147483648 to +2147483647.

Single precision floating-point (REAL)

A single precision floating-point number is a short (32 bits) floating-point

number. The range of single precision floating-point numbers is about

-7.2E+75 to 7.2E+75. In this range, the largest negative value is about

-5.4E-79, and the smallest positive value is about 5.4E-079.

 The query processor uses standard 370 representation to process single

precision floating point numbers. Individual databases might treat these

numbers in different representations and support different limits. Likewise,

when single precision floating point numbers are manipulated by the CLI,

JDBC, and ODBC client components, the representation and limits are

based on the platform and compiler that is used.

 On the z/OS® server, the 370 representation consists of a sign bit, a 7-bit

biased hexadecimal exponent, and a 24-bit fractional part. The exponent

bias is 64. All operations on single precision floating point numbers are

normalized. The value that can be represented by a single precision

floating point number is approximately 6 or 7 decimal digits of precision.

Double precision floating-point (DOUBLE or FLOAT)

A double precision floating-point number is a long (64 bits) floating-point

number. The range of double precision floating-point numbers is about

-7.2E+75 to 7.2E+75. In this range, the largest negative value is about

-5.4E-79, and the smallest positive value is about 5.4E-079.

 Like single precision numbers, double precision numbers that are

manipulated by the z/OS server components use standard 370

representation with the caveat that the source database and client

implementation might be different than that used by the data server.

 On the z/OS server, the 370 representation consists of a sign bit, a 7-bit

biased hexadecimal exponent, and a 56-bit fractional part. The exponent

bias is 64. All operations on double precision floating point numbers are

normalized. The value that can be represented by a single precision

floating point number is approximately 16 or 17 decimal digits of

precision.

Decimal (DECIMAL)

A decimal number is a packed decimal number with an implicit decimal

point. The position of the decimal point is determined by the precision and

the scale of the number. The scale, which is the number of digits in the

fractional part of the number, cannot be negative or greater than the

precision. The maximum precision is 31 digits.

 All values of a decimal column have the same precision and scale. The

range of a decimal variable or the numbers in a decimal column is -n to

+n, where n is the largest positive number that can be represented with the

applicable precision and scale. The maximum range is 1 - 10³¹ to 10³¹ - 1.

String representations of numbers

Values whose data types are small integer, large integer, floating-point, and

decimal are stored in an internal form that is transparent to the user of

SQL. But string representations of numbers can be used in some contexts.

A valid string representation of a number must conform to the rules for

numeric constants.

Chapter 1. General information 11

Constants

A constant (also called a literal) specifies a value. Constants are classified as string

constants or numeric constants. Numeric constants are further classified as integer,

floating-point, or decimal. String constants are classified as character or graphic.

All constants have the attribute NOT NULL. A negative sign in a numeric constant

with a value of zero is ignored.

The types of constants are as follows:

Integer constants

Specifies a binary integer as a signed or unsigned number that has a

maximum of 10 significant digits and no decimal point. If the value is not

within the range of a large integer, the constant is interpreted as a decimal

constant. The data type of an integer constant is large integer.

 In syntax diagrams, the term integer is used for an integer constant that

must not include a sign.

Floating-point constants

Specifies a floating-point number as two numbers separated by an E. The

first number can include a sign and a decimal point. The second number

can include a sign but not a decimal point. The value of the constant is the

product of the first number and the power of 10 that is specified by the

second number. The value must be within the range of floating-point

numbers. The number of characters in the constant must not exceed 30.

Excluding leading zeros, the number of digits in the first number must not

exceed 17, and the number of digits in the second must not exceed 2. The

data type of a floating-point constant is double precision floating-point.

Decimal constants

Specifies a decimal number as a signed or unsigned number of no more

than 31 digits and either includes a decimal point or is not within the

range of binary integers. The precision is the total number of digits,

including any to the right of the decimal point. The total includes all

leading and trailing zeros. The scale is the number of digits to the right of

the decimal point, including trailing zeros.

Character string constants

Specifies a varying-length character string. Character string constants have

these forms:

A sequence of characters that starts and ends with an apostrophe (’).

Specifies the character string that is contained between the string

delimiters. The number of bytes between the delimiters must not

be greater than 255. Two consecutive string delimiters are used to

represent one string delimiter within the character string.

 15E1 2.E5 -2.2E-1 +5.E+2

Figure 3. Floating-point constants that represent the numbers 150, 200000, -0.22, and 500

 025.50 1000. -15. +375893333333333333333.33

Figure 4. Decimal constants that have precisions and scales of 5 and 2, 4 and 0, 2 and 0, 23

and 2

12 SQL Reference for Classic Federation and Classic Data Event Publishing

An X followed by a sequence of characters that starts and ends with a

string delimiter.

Also called a hexadecimal constant. The characters between the

string delimiters must be an even number of hexadecimal digits.

The number of hexadecimal digits must not exceed 254. A

hexadecimal digit is a digit or any of the letters A through F

(uppercase or lowercase). Under the conventions of hexadecimal

notation, each pair of hexadecimal digits represents a character. A

hexadecimal constant allows you to specify characters that do not

have a keyboard representation.

 The last string in the example (’’) represents an empty character string

constant, which is a string of zero length.

 A character string constant is classified as mixed data if it includes a DBCS

substring. In all other cases, a character string constant is classified as

SBCS data.

Graphic string constants

Specifies a varying-length graphic string.

 In EBCDIC environments, the forms of graphic string constants are:

v G’0x0e[dbcs-string]0x0f’

v N’0x0e[dbcs-string]0x0f’

In SQL statements, graphic string constants cannot be continued from one

line to the next. The maximum number of DBCS characters in a graphic

string constant is 124.

General syntax diagrams

The syntax for the DROP and COMMENT ON statements is the same for all the

DBMS types.

DROP statement

The DROP statement deletes an object from the metadata catalog.

Syntax

�� DROP INDEX index-name ;

TABLE

table-name

PROCEDURE

procedure-name

VIEW

view-name

 ��

Parameters

INDEXindex-name

 Deletes an index definition from the metadata catalog.

 Following the INDEX keyword is the index name. If qualified, the name is a

two-part name, and the authorization ID that qualifies the name is the index

 ’12/14/1985’ ’32’ ’DON’’T CHANGE’ X’FFFF’ ’’

Figure 5. Examples of character string constants

Chapter 1. General information 13

owner. If an unqualified name is supplied, the owner name is the authorization

ID from the CURRENT SQLID special register.

 One of the following permissions is required to run the statement:

v SYSADM

v DBADM for the database type that is in the DBNAME column for the table

that is referenced by the index

v Ownership of index_name or the owner of table that is referenced by the

index.

TABLE table-name

 Deletes a table from the metadata catalog. The table name can be a qualified or

unqualified table name. If an unqualified name is supplied, the table owner is

from the CURRENT SQLID special register.

 When a table is deleted, all dependent indexes are deleted, in addition to any

views that reference the table. All authorization information that is associated

with the table is also deleted from the metadata catalog.

 One of the following permissions is required to run the DROP TABLE

statement:

v SYSADM

v DBADM for the database type that is in the DBNAME column for the table

referenced by the index

v Ownership of the table that you are dropping

PROCEDURE procedure-name

 Deletes a stored procedure definition from the metadata catalog. The procedure

name can be a qualified or unqualified name. If an unqualified name is

supplied, the stored procedure owner is from the CURRENT SQLID special

register.

 All authorization information that is associated with the procedure is also

deleted from the metadata catalog.

 One of the following permissions is required to run the DROP PROCEDURE

statement:

v Ownership of the procedure

v SYSADM authority

VIEWview-name

 Identifies the name of the view to be deleted. view-name can be a qualified or

unqualified view name. If an unqualified name is supplied, the view owner is

obtained from the CURRENT SQLID special register.

 When a view is deleted, all authorization information that is associated with

the view is also deleted from the metadata catalog. DROP VIEW deletes

dependent views along with those specified in the DROP VIEW statement.

 One of the following permissions is required to execute the DROP VIEW

statement:

v SYSADM

v Ownership of the view being dropped

14 SQL Reference for Classic Federation and Classic Data Event Publishing

COMMENT ON statement

The COMMENT statement adds or replaces comments in the descriptions of

objects in the metadata catalog.

The COMMENT ON statement updates the REMARKS column in the

SYSIBM.SYSTABLES, SYSIBM.SYSCOLUMNS, SYSIBM.SYSINDEXES, or

SYSIBM.SYSROUTINES table, depending on the form of the statement.

The COMMENT ON statement has two syntax diagrams. The first syntax diagram

updates the REMARKS column in a single metadata catalog table. The second

syntax diagram updates the REMARKS column in the SYSIBM.SYSCOLUMNS

table for a table or view definition.

Syntax

�� COMMENT ON COLUMN table-name .column-name

view-name

INDEX

index-name

PROCEDURE

procedure-name

TABLE

table-name

view-name

 �

� IS string-constant ; ��

��

COMMENT ON

table-name

view-name

�

 ,

(

column-name

IS

string-constant

)

;

��

Parameters

COLUMN

 Specifies the column that the comment applies to.

 The name must identify a column of a table or view that exists in the system

catalog. The column names must not be qualified. The comment is placed into

the REMARKS column of the SYSIBM.SYSCOLUMNS system table, for the row

that describes the column.

 Do not use the keywords TABLE or COLUMN to comment on more than one

column in a table or view. Give the table or view name and then, in

parentheses, a list in the form:

column-name IS string-constant,

column-name IS string-constant,...

One of the following permissions is required to run the COMMENT ON

statement to update a column:

v Ownership of the table or view

v SYSADM authority

v DBADM authority for the database class (only when a table is referenced)

table-name.column-name

Name of the table column that the comment applies to.

Chapter 1. General information 15

view-name.column-name

Name of the view column that the comment applies to.

INDEX index-name

 Updates the REMARKS column in SYSIBM.SYSINDEXES for an index

definition in the metadata catalog.

 Following the INDEX keyword is the index name. If qualified, index-name is a

two-part name, and the authorization ID that qualifies the name is the owner

of the index. If an unqualified index name is supplied, the owner name is the

authorization ID, which is from the CURRENT SQLID special register.

 One of the following permissions is required:

v Ownership of the table or index

v DBADM authority for the database class of the table referenced by the index

v SYSADM authority

PROCEDURE procedure-name

 Updates the REMARKS column in SYSIBM.SYSROUTINES table for a stored

procedure definition.

 Following the PROCEDURE keyword is the procedure name. If qualified, the

procedure name is a two-part name, and the authorization ID that qualifies the

name is the owner of the procedure. If an unqualified procedure name is

supplied, the owner name is the authorization ID from the CURRENT SQLID

special register.

 One of the following permissions is required:

v Ownership of the procedure

v SYSADM authority

TABLE

 Updates the REMARKS column in SYSIBM.SYSTABLES for a table or view.

 Following the TABLE keyword is a name that refers to either a table or view. If

qualified, the table or view name is a two-part name, and the authorization ID

that qualifies the name of the owner of the table or view. If an unqualified

table name is supplied, the owner name is the authorization ID that is from the

CURRENT SQLID special register.

 One of the following permissions is required:

v Ownership of the table or view

v SYSADM authority

v DBADM authority for the database class (only when a table is referenced)

table-name

Name of the table that the comment applies to.

view-name

Name of the view that the comment applies to.

IS string-constant

 Introduces the comment that you want to make.

 string-constant can be any SQL character string constant of up to 254 bytes.

16 SQL Reference for Classic Federation and Classic Data Event Publishing

Chapter 2. IMS

You can use the CREATE TABLE, ALTER TABLE and CREATE INDEX statements

to define tables and indexes that reference IMS databases.

CREATE TABLE statement for IMS

You can use the CREATE TABLE statement to define a logical table that references

an IMS database.

Authorization

 The connected user ID must have one of the following privileges to run the

CREATE TABLE statement:

v SYSADM

v DBADM for the database type that is referenced in the DBTYPE clause

The owner has all table privileges on the table (such as SELECT, UPDATE, and

so on) and the authority to drop the table. The owner can grant equivalent use

privileges on the table.

�� CREATE TABLE table-name DBTYPE IMS DBD-name �

�
INDEXROOT

perceived-root-segment-name
 �

� leaf-segment-name

SUBSYSTEM

IMS-subsystem-ID
 �

�
SCHEDULEPSB

(

standard-PSB-name

)

,

JOIN-PSB-name

 �

�

�

�

PCBPREFIX PCB

PCB-name-prefix

,

PCBNAME

(

PCB-name

)

,

PCBNUM

(

PCB-number

)

(

count

)

 �

© Copyright IBM Corp. 2007 17

�

�

 ,

(

column-definition

record-array-definition

�

�

�

);

,

,

PRIMARY KEY

(

column-name

)

 ��

authorization-ID.table-name

 Identifies the owner of the table and the name of the table that you want to

create.

 If you do not provide an authorization ID, the ID in the CURRENT SQLID

special register is used.

 You must create more than one table if you map to a database or a file that

meets either of these criteria:

v The database or file contains repeating data.

v The database or file contains information about one or more distinct

sub-objects, because the database or file is not designed to follow the third

normalization rules, which are part of the standards to eliminate

redundancies and inconsistencies in table data. In a table designed according

to third normalization rules, each non-key column is independent of other

non-key columns, and is dependent only upon the key.

DBTYPE IMS

Specifies that the CREATE TABLE statement defines a logical table that

references an IMS database.

DBD-name

Identifies the IMS DBD (database definition) that the table references.

DBD-name corresponds to the name in the NAME parameter for the DBD

statement. That statement is in the DBDGEN source definition for the IMS

logical or physical database that the IMS table references. DBD-name follows

z/OS load-module naming conventions.

INDEX ROOT perceived-root-segment-name

 Identifies the root segment for the database hierarchy that the IMS logical table

definition maps. By default, the root segment is the physical or logical root

segment for the database that DBD-name specifies. The physical or logical root

segment for the database constitutes the root segment for verification of the

IMS hierarchy to the segment that leaf-segment-name specifies.

 The INDEXROOT clause is required when the logical table references an IMS

secondary data structure hierarchy because the intent is to use a secondary

index to access or update the IMS database. The INDEXROOT clause is

required only when a secondary index is used and the target segment of the

secondary index is not the root segment of the database. For additional

information about secondary indexes, see the IMS Administration Guide:

Database Manager.

 The name is a short native identifier that follows IMS segment naming

conventions. The segment must exist in the DBD that DBD-name specifies.

18 SQL Reference for Classic Federation and Classic Data Event Publishing

The segment must be either the root segment of the database or the root

segment because a secondary index accesses the table and database.

 The following caveats apply for the INDEXROOT clause:

v If you define a table for change capture, you cannot define a table that maps

to a secondary index and secondary data structure. Changes are captured at

the physical DBD level. You cannot use data capture where the INDEXROOT

segment is not the root segment of a physical database.

v When a secondary index exists in the database that your table references and

the target segment in the segment hierarchy is the root segment of the

database, create separate tables for each access path.

You can use one table to access the IMS database by using the primary key

sequence field. You can use the additional tables to access the database by

using the secondary index XDFLD definition. Each of these additional tables

must use either a different PSB to access the database, or the PCB prefix

option if for a single PSB.

v To use a single mapping for both primary key and secondary index access,

you must specify the PCB prefix option and explicitly define indexes by

using the CREATE INDEX statement for each access technique (primary key

or XDFLD). On each index definition, you identify the PCB prefix that

selects the PCB that accesses the IMS database.

In this situation, the PCB that accesses the database depends upon the

contents of the WHERE clause:

– If columns in the WHERE clause provide references to all of the columns

that make up an XDFLD definition, the PCB prefix for the index that

contains the XDFLD columns is used to access the database.

– If the WHERE clause contains references to the columns that map to the

primary key sequence field, the index that contains the primary key

sequence field columns is selected. The PCB prefix that is associated with

that index is used to access the database.

– If the WHERE clause does not contain sufficient information to select

either index, the PCB prefix at the table level determines which PCB

accesses the database.

leaf-segment-name

 Identifies the lowest level segment in the database hierarchy that the table

maps to.

 The database hierarchy is determined by traversing the parent chain

(PARENT= keyword in the DBD definition) for leaf-segment-name to either the

explicitly identified perceived-root-segment-name or the root segment of the

physical or logical database.

 The name is a short native identifier that follows IMS segment naming

conventions. The segment must exist in the DBD that is identified by

DBD-name.

 When perceived-root-segment-name is the physical or logical root segment of the

database, leaf-segment-name must be a physical or logical child of

perceived-root-segment-name.

 When perceived-root-segment-name is the root segment in a secondary data

structure, leaf-segment-name must be a child of perceived-root-segment-name.

SUBSYSTEM IMS-subsystem-ID

Chapter 2. IMS 19

Identifies the IMS subsystem that is the location of the database that DBD-name

specifies. The Open Database Access (ODBA) interface uses IMS-subsystem-ID

when it accesses or updates the IMS database for two-phase commit.

 The ID is a native identifier that follows IMS subsystem naming conventions.

IMS-subsystem-ID is 1 to 4 characters in length.

 Do not use IMS-subsystem-ID for change capture or when an interface other

than ODBA accesses the IMS data. If ODBA accesses data and

IMS-subsystem-ID is not provided, IMS-subsystem-ID is obtained from the

service information entry for CACRRSI in the configuration file of the data

server.

SCHEDULEPSB

 Identifies the names of one or two PSBs that access or update the IMS database

when the DRA or ODBA interface is used.

 Do not use PSB scheduling information in change capture.

standard-PSB-name

 Identifies the name of the default PSB that accesses the IMS database.

JOIN-PSB-name

Optionally specifies the name of the PSB that is scheduled to access the

IMS database. The DRA and ODBA interfaces use DBD-name to identify the

IMS database. JOIN-PSB-name corresponds to a PSB definition that is

defined to the IMS system being accessed and as a PDS member under the

same name that exists in the active ACB library of the target IMS

subsystem.

 If your applications issue joins against multiple IMS tables, specify

JOIN-PSB-name.JOIN-PSB-name follows the naming conventions for the

z/OS load module.

 The PSB is scheduled when a SELECT statement is run that contains a

JOIN predicate that references multiple IMS tables. This first table is the

one that JOIN references.

PCBPREFIX PCB PCB-name-prefix

Identifies a partial PCBNAME that specifies the PCB that accesses or updates

the IMS database.

 Do not use PCB prefix for change capture.

 The prefix is a native identifier that follows IMS PCB naming conventions.

PCB-name prefix is from 1 to 7 characters in length.

PCBNAME (PCB_name,...)

Specifies up to 5 PCB names, each of which access an IMS database for a table.

Multiple names are required if the same table is referenced more than one time

in an SQL statement, or when the same PCB name is associated with more

than one table, and the additional tables are referenced in a single SQL

statement.

 Each PCB name in the list is 1 to 8 characters in length.

PCBNUM (PCB_number (count),...)

Allows more potential PCBs to access the IMS database for the table than the

PCBNAME keyword allows. Multiple numbers are required if the same table is

referenced more than once in an SQL statement, or when the same PSB is

associated with more than one table, the PCBs in the PSB have sensitivity to

20 SQL Reference for Classic Federation and Classic Data Event Publishing

the segments that the table accesses and the same PCB ordinal numbers are

specified for these tables. These additional tables are referenced in a single SQL

statement.

 You can specify up to ten sets of PCB number ranges. The order of the

numbers represent which order a PSB is checked to determine whether a PCB

accesses the IMS database.

 For each item in the list, different methods identify the PCB numbers that are

checked. The simplest method is separate each PCB number with commas. The

second method identifies a range that consists of a starting PCB number that is

followed by parenthesis and a number that identifies the number of PCBs to

check from the starting number.

 With either method, the PCB number represents the relative 1 ordinal number

of the PCB that is checked. Because an input or output PCB must be defined in

each PSB, the minimum practical PCB number is 2.

column_definition

 Provides SQL descriptions of the contents of the segments in the IMS database

hierarchy that this table accesses. Optionally, the column can include one or

more record arrays that identify repeating data in the sequential file. IMS

databases have limited metadata. The DBD definition defines the segments that

make up the database and its hierarchical structure.

 A table must contain at least one column and can contain up to 5,000 columns.

Columns are named, and each name must be unique within the table.

 At a minimum, the DBD definition contains an IMS FIELD definition for the

keys for each segment in the database and XDFLD definitions that identifies

the keys of any secondary indexes. Whether the DBD contains additional

FIELD statements that define the other fields in each segment, is site

dependent. A common practice is to only define additional FIELD statements

for those attributes that are referenced in segment search arguments (SSAs)

that the applications issue. Then IMS filters the data that is returned to the

application.

record_array_definition

 Identifies repeating data. Record array definitions contain column definitions

and possibly more record array definitions.

 Federated queries can use record array definitions if you create a separate table

for each array. Change capture can use record arrays if you map the columns in

a flattened structure that provides a separate column for each array instance

and field.

 Federated queries

 For federated queries, define multiple tables. Each table consists of a single

record array definition that contains the column definitions unique to a single

array instance. Any given column appears in each instance of the array. Using

the example of employee dependents, the table structure looks like this:

 Table 2. Structure of an array mapped to a Dependents table.

KEY DEP_LAST_NAME DEP_FIRST_NAME DEP_GENDER DEP_SSN DEP_DOB

 One common reason to create multiple table definitions for a database or file is

that a table contains multiple, non-nested record arrays with a fixed number of

instances. When the table has multiple arrays and instances, queries that

reference the table yield result sets that are too large.

Chapter 2. IMS 21

You can use an algorithm to calculate the number of rows in the result set

from a query on a table that contain arrays, before any filtering predicates that

are supplied on the WHERE clause. The number of rows in the result set is the

Cartesian product of:

 v The product of the instances in each record array

v The number of physical records

In this example, if:

 1. The employee has:

v Four dependents

v Two emergency contacts

v Three assignments
2. The database has ten employee records

Then a query generates 4 * 2 * 3 * 10 = 240 rows in the result set, and 24

rows for each employee record.

 Another scenario is that a record has multiple arrays, and the last array has a

variable length (in this example, the number of dependents is unknown). With

variable-length arrays, you can’t calculate the actual number of rows in the

result set.

 You cannot map columns that appear in a table subsequent to variable-length

arrays at all, because these columns do not appear at a predictable offset.

 Another common reason to create multiple table definitions for a database or

file is that the database or file contains redefined information. The database

record or segment consists of fixed information that includes a type code field

that identifies the remaining contents of the record or segment.

 For read-only queries, you can supply filtering information in a view definition

that applications use when they need to access data for a given record type.

You cannot perform updates against a view, however. If an application needs

to update a database or file containing redefined information, then the

application must use the base table name with WHERE filtering.

 To query redefined information, define multiple logical tables — one for each

type of record.

 1. Each table must contain columns that identify common key information

and a column for the type code field.

2. These columns are followed by type-specific columns.

3. When accessing these tables, do one of the following:

v Supply a WHERE clause to filter the records based on the type code

value.

v Create a view with the WHERE clause and query the view.

Change capture

 You cannot map record array definitions for change capture. If you want to map

record arrays for change capture, map the columns in a flattened structure that

provides a separate column for each array instance and field. For example, say

you map a record array for employee dependents that contains five fields:

 1. DEP_LAST_NAME

22 SQL Reference for Classic Federation and Classic Data Event Publishing

2. DEP_FIRST_NAME

3. DEP_GENDER

4. DEP_SSN

5. DEP_DOB

If you want to support up to ten dependents, you must map 50 columns with

names that uniquely identify each instance and field. In this example, the

column names range from DEP_LAST_NAME_1 to DEP_DOB_50.

 Change capture does not currently support record array definitions, because

change capture must send one notification per change. In this example, a

message describing an update to a single field in the employee table inserts ten

rows of changed data in the logical table on the data server — one for each

dependent.

 Another unsupported scenario is adding a new dependent to an array that

uses a DEPENDING ON or similar clause. In this example, database operations

calculate the number of dependents on the fly, based on the value of a column

that stores the number of dependents, such as EMPL_DEP_COUNT. Adding a

new dependent updates a single record in the source database, but the change

inserts a new row into the logical table on the data server.

 Flatten the structure of your logical table to avoid the confusing insert and

update logic in scenarios like those described here. Event publishing

applications that consume the data cannot process the logic.

PRIMARY KEY column-name

 Identifies the columns that uniquely identify an IMS database record and the

segment instances that this table references in an IMS database.

 The specification of primary key information is always valid for a table that

references an IMS database.

 The ability to determine what constitutes a good set of primary key columns

versus a bad set of columns depends primarily upon whether

perceived-root-segment-name is explicitly specified or implicitly identified, for

example by the root segment.

 The primary key does not enforce the same restrictions that the CREATE

INDEX statement does. There is no prohibition against identifying the columns

that make up the primary key sequence field or a DEDB, HDAM or PHDAM

database as primary key columns. Likewise, you can use primary key columns

for child segments. References to columns that map to the sequence fields of

all of the child segments in the database hierarchy are also good primary key

column references. Under the assumption that the fully concatenated key is

unique, references to child segment sequence fields that are not unique are also

acceptable . A warning message is generated when a reference is made to a

non-unique child sequence field.

Example

The following is an example of a CREATE TABLE statement for IMS.

 CREATE TABLE CXAIMS.IMSALDB DBTYPE IMS

 FVT52901 INDEXROOT FVTROOT FVTROOT

 SCHEDULEPSB(PF52901U) PCBPREFIX FVT

 (

 ALDBIMSKEY SOURCE DEFINITION ENTRY FVTROOT

Chapter 2. IMS 23

DATAMAP OFFSET 0 LENGTH 4 DATATYPE F

 USE AS INTEGER,

 ALDBIMSCHAR SOURCE DEFINITION ENTRY FVTROOT

 DATAMAP OFFSET 4 LENGTH 254 DATATYPE C

 USE AS CHAR(254)

 NULL IS X’4040’,

 ALDBIMSLDECIMAL SOURCE DEFINITION ENTRY FVTROOT

 DATAMAP OFFSET 266 LENGTH 8 DATATYPE P

 USE AS DECIMAL(15,0)

 NULL IS X’000000000000000C’,

 ALDBIMSDECIMALMAX SOURCE DEFINITION ENTRY FVTROOT

 DATAMAP OFFSET 282 LENGTH 8 DATATYPE P

 USE AS DECIMAL(15,15)

 NULL IS X’000000000000000C’,

/* */

 ALDBIMSLFLOAT SOURCE DEFINITION ENTRY FVTROOT

 DATAMAP OFFSET 294 LENGTH 8 DATATYPE D

 USE AS FLOAT(53)

 NULL IS X’0000’,

 ALDBIMSDBLPREC SOURCE DEFINITION ENTRY FVTROOT

 DATAMAP OFFSET 302 LENGTH 8 DATATYPE D

 USE AS FLOAT(53)

 NULL IS X’0000’,

 ALDBIMSINTEGER SOURCE DEFINITION ENTRY FVTROOT

 DATAMAP OFFSET 310 LENGTH 4 DATATYPE F

 USE AS INTEGER

 NULL IS X’00000000’,

 ALDBIMSREAL SOURCE DEFINITION ENTRY FVTROOT

 DATAMAP OFFSET 314 LENGTH 4 DATATYPE D

 USE AS FLOAT(21)

 NULL IS X’0000’,

 ALDBIMSSMALLINT SOURCE DEFINITION ENTRY FVTROOT

 DATAMAP OFFSET 318 LENGTH 2 DATATYPE H

 USE AS SMALLINT

 NULL IS X’0000’,

 ALDBIMSVCHAR SOURCE DEFINITION ENTRY FVTROOT

 DATAMAP OFFSET 320 LENGTH 256 DATATYPE V

 USE AS VARCHAR(254)

 NULL IS X’4040’,

/* */

 ALDBIMSLVCHAR SOURCE DEFINITION ENTRY FVTROOT

 DATAMAP OFFSET 576 LENGTH 1026 DATATYPE V

 USE AS VARCHAR(1026)

 NULL IS X’4040’,

/* */

 ALDBIMSLVGRAPHIC SOURCE DEFINITION ENTRY FVTROOT

 DATAMAP OFFSET 2112 LENGTH 1025 DATATYPE V

 USE AS VARGRAPHIC(1025)

/* USE AS LONG VARGRAPHIC */

 NULL IS X’4040’,

 PRIMARY KEY (ALDBIMSKEY)

);

Columns for IMS

You can define a column that references an IMS database. For IMS column

definitions, you must also identify the name of the segment where the column

resides.

Syntax

24 SQL Reference for Classic Federation and Classic Data Event Publishing

�� column-name SOURCE DEFINITION ENTRY segment-name �

�
IMS-field-name

PCBPREFIX

PCB-name-prefix

 �

� DATAMAP OFFSET relative-offset LENGTH length

DATATYPE

C

P

D

F

H

V

UC

UP

UH

UF

 �

� USE AS CHAR (length)

VARCHAR

(

length

)

LONG VARCHAR

GRAPHIC

(

length

)

VARGRAPHIC

(

length

)

LONG VARGRAPHIC

INTEGER

SMALLINT

DECIMAL

(

precision, scale

)

DECIMAL

(

precision

)

FLOAT

(

precision

)

REAL

DOUBLE PRECISION

 �

�
 WITHOUT CONVERSION

WITH CONVERSION

field_procedure_name

NULL IS

null_value

�

�
PRIMARY KEY

 ��

Parameters

column-name

Identifies the name of the column.

 Specifies the column name that is a long identifier. Column names cannot be

qualified with a CREATE TABLE statement.

segment-name

Identifies the segment where the column is located. The name is a short native

identifier.

 The name must also exist in the DBD that DBD_name specifies and must exist

in the hierarchic path between the perceived_root_segment_name identifier and

the leaf_segment_name identifier.

Chapter 2. IMS 25

DATAMAP

Specifies the relative offset for a column. If a LENGTH keyword is specified,

information about the length of the column is also defined.

OFFSET relative-offset

 Follows the DATAMAP keyword to set the offset for the column. For some

data sources like Adabas and CA-IDMS, explicit offset and length information

does not need to be supplied because the system data dictionaries can provide

this information. In these cases, the column definition does not provide offset

information. The column definition only identifies the element or field name

that the column corresponds to in the data source data dictionary. If a column

definition references a portion of a dictionary element or field, the grammar

supports specifying column offset and length within the element or field. The

column definition can identify the column offset of the start of the column and

the length of the element or field that the column is being mapped to.

 The relative offset identifies the relative zero offset of the starting position of

the column within the object that the column is associated with. For simple

objects like a VSAM or sequential file, the offset is generally measured from

the start of the record. For more complex databases, like IMS or CA-IDMS, the

relative offset is measured from the start of a segment or record. If the column

is defined within a record array, then the relative offset is measured from the

start of the record array that is measured from the start of the fragment that

the column is associated with.

Note: Columns do not need to be defined in ascending relative offset starting

sequence. When a mapping contains fixed length record arrays with additional

columns following the record array, the starting offsets typically increase for

the columns before the record array definition. For the columns in the record

array, the relative offset information is reset to one and to larger numbers for

those columns that exist after the record array.

LENGTH length

The LENGTH clause is required for IMS column definitions.

 Specifies the length of the column. Generally, inconsistencies between the

length that is specified using the LENGTH keyword and the length that is

obtained from the SQL data type definition on the USE AS clause are ignored.

For native DECIMAL data types the LENGTH must match the computed

physical length of the column, based on the precision and scale specified in the

USE AS clause when the USE AS precision is non-zero. For USE AS DECIMAL

definitions the LENGTH must match the computed physical length of the

column when the scale is non-zero and greater than the precision.
Additionally, differences between the length and the SQL length specification

for VARCHAR and VARGRAPHIC data types identify how to interpret the

length attribute for the varying length column. The following rules are applied

for VARCHAR data types:

v If the length and the VARCHAR lengths are identical, then the control length

is assumed to include the length (2 bytes) that is taken up by the control

length component.

v If the length is two bytes greater than the VARCHAR length, then the control

length component is assumed to identify the actual length of the data.

For a varying length graphic string, the same kind of conventions are used.

However, the lengths are expressed in DBCS characters. Therefore the rules are

as follows:

26 SQL Reference for Classic Federation and Classic Data Event Publishing

v If the length and the VARGRAPHIC lengths are identical, then the control

length is assumed to include the length (1 DBCS character, which is 2 bytes)

that is taken up by the control length of a component.

v If the length is one character greater (two bytes) than the VARGRAPHIC

length, then the control length component is assumed to identify the actual

length of the data in characters.

Generally, the USE AS length must match the length value specified. However,

for VARCHAR, the length can be two bytes off. For VARGRAPHIC, the length

can be different by one. For these data types, the differences do not represent a

conflict.

DATATYPE

 Identifies the native format of the column.

 The following table identifies the basic native data types.

 Table 3. Native data types

DATATYPE value Contents

Standard SQL data

type

Other SQL data

types

C Mixed mode

character data. When

the SQL data type is

DECIMAL, the data

is assumed to consist

wholly of numbers

with the right most

number identifying

the sign.

CHAR DECIMAL,

VARCHAR,

GRAPHIC, or

VARGRAPHIC

P Packed decimal data

where the sign is

stored in the far right

aggregation of four

bits.

DECIMAL N/A

D1 Floating point data.

The columns length

or precision

determines whether

the SQL data type is

REAL or DOUBLE

PRECISION.

REAL or DOUBLE

PRECISION

N/A

F 32 bit signed binary

value where the sign

is in the high order

bit.

INTEGER N/A

H 16 bit signed binary

value where the sign

is in the high order

bit.

SMALLINT N/A

V Variable mixed mode

character data, where

the actual data is

preceded by a 16 bit

signed binary number

that identifies the

actual length of the

data.

VARCHAR LONG VARCHAR,

VARGRAPHIC, or

LONG

VARGRAPHIC

Chapter 2. IMS 27

Table 3. Native data types (continued)

DATATYPE value Contents

Standard SQL data

type

Other SQL data

types

UC Unsigned zoned

decimal data where

the last character

does not identify the

sign. The value is

always a positive

value.

DECIMAL CHAR

UP Packed decimal data

where the sign nibble

is ignored. The value

is always positive.

DECIMAL N/A

UF2 Unsigned 32 bit

binary value.

INTEGER N/A

UH3 Unsigned 16 bit

binary value.

SMALLINT N/A

1The SQL data type is identified as FLOAT, and the column length is either 4 or 8, based on

the column precision. In the USE AS clause, these floating point data types can be identified

as FLOAT(precision), REAL, or DOUBLE PRECISION. REAL is shorthand for a 4 byte

floating point number. DOUBLE PRECISION is shorthand for an 8-byte floating point

number. For FLOAT, the maximum precision is specified. If the value is in the range 1 21,

the column represents a 4 byte floating point number. For precisions in the range 22 53, the

column represents an 8 byte floating point number. The GUI does not need to specify a

native data type for floating point columns because the data type is defaulted based on the

USE AS clause.

2Specifying a DATATYPE of UF or UH has no effect on the contents or formatting of the

underlying value that is stored in the database. Because the SQL INTEGER and SMALLINT

data types are always signed the underlying binary value is always treated as a signed

value. The UF and UH DATATYPE values are included in the list to be consistent with the

UC and UP data types.

3Specifying a DATATYPE of UF or UH has no effect on the contents or formatting of the

underlying value that is stored in the database. Because the SQL INTEGER and SMALLINT

data types are always signed the underlying binary value is always treated as a signed

value. The UF and UH DATATYPE values are included in the list to be consistent with the

UC and UP data types.

Some database-specific data types are supported that are not shown in the

above table.

 If DATATYPE information is not specified, the native data type is synthesized

based on the column of the SQL data type or from the database system.

 The SQL data type information in the USE AS clause identifies the value in the

SIGNED column in the following instances:

v One character code is supplied

v No DATATYPE information is specified

v Native data type information is not obtained from the database system

USE AS

Identifies the SQL data type for the column.

 The following table describes the data types for columns. The non-null

SQLTYPE identifies the data type in internal control blocks and diagnostic

trace information.

28 SQL Reference for Classic Federation and Classic Data Event Publishing

Table 4. SQL data type descriptions

Keyword identifier Description Maximum length SQLTYPE

CHAR(length) Fixed-length character

string that contains

mixed mode data.

255 452

VARCHAR(length) Variable length

character string that

contains mixed mode

data. A half-word

length component

precedes the

character string and

identifies the actual

length of the data.

The length field does

not include the length

of the length field.

32704 448

LONG VARCHAR Long character string

that contains mixed

mode data. A

half-word length

component precedes

the character string

and identifies the

actual length of the

data. The length field

does not include the

length of the length

field.

32704 456

GRAPHIC(length) Fixed-length graphic

string that is assumed

to contain pure DBCS

data without shift

codes. The length is

expressed in DBCS

characters, and not

bytes.

127 468

VARGRAPHIC(length) Varying-length

graphic string that is

assumed to contain

pure DBCS data

without shift codes. A

half-word length

component precedes

the graphic string

and identifies the

actual length of the

data. The length is

expressed in DBCS

characters, and not

bytes.

16352 464

Chapter 2. IMS 29

Table 4. SQL data type descriptions (continued)

Keyword identifier Description Maximum length SQLTYPE

LONG

VARGRAPHIC

Long graphic string

that is assumed to

contain pure DBCS

data without shift

codes. A half-word

length component

precedes the graphic

string and identifies

the actual length of

the data. The length

is expressed in DBCS

characters, and not

bytes.

16352 472

INTEGER Large integer. Exactly 4 496

SMALLINT Small integer. Exactly 2 500

DECIMAL

(precision,scale) or

DECIMAL(precision)

Packed decimal data.

A valid precision

value is between 1

and 31. A valid scale

value is between zero

and the precision

value.

31 484

FLOAT(precision) Floating point

number. Depending

upon the precision, a

column with a

FLOAT data type

takes on the

attributes of a REAL

or DOUBLE

PRECISION data

type. When precision

is in the range of 1 to

21, the column is

treated as a REAL.

For precisions

between 22 and 53,

the column takes on

DOUBLE PRECISION

attributes. A precision

of zero or greater

than 53 is nonvalid.

4 or 8 480

REAL Floating point

number with a range

of magnitude of

approximately 5.4E 79

to 7.2E+75.

4 480

DOUBLE PRECISION Floating pointer with

a range of magnitude

of approximately 5.4E

79 to 7.2E+75.

8 480

When you use a USE AS LONG VARCHAR or USE AS LONG VARGRAPHIC

clause, you do not specify a length for the column. The length is based on the

30 SQL Reference for Classic Federation and Classic Data Event Publishing

physical attributes that are obtained about the object record or segment where

the column is. When you use a USE AS VARCHAR clause with a length

greater than 254, that column is changed into a LONG VARCHAR column. The

length in the clause is discarded. The maximum physical length is computed

based on physical attributes. The same behavior occurs for a USE AS

VARGRAPHIC clause when the length is greater than 127.

WITHOUT CONVERSION

Specifies that a field procedure does not exist for the column.

WITH CONVERSION

Identifies the name of the load module for a field procedure, if a field

procedure is required. The field procedure name is a short identifier.

NULL IS null_value

Specifies a value that identifies when the contents of the column is null. By

default, the data in a column never contains a null value. This situation is true

even for variable length character or graphic columns where the length

component indicates that there is no data in the variable length column.

 A null value is a character string that can specify up to 16 characters of data.

Specifies the value in hexadecimal format. The total length of the string is 35

characters.

 A column contains null values based on null-value. If the start of the column

data matches the null value, then that instance of the column is null. For

example, if a column is defined as CHAR(10) and a null value of x’4040’ is

specified, the null value length is 2. If the first 2 bytes of the column contain

spaces, the column is also null.

PRIMARY KEY

Identifies the column to be one of the columns that constitute the primary key

for the table. This form of primary key identification is mutually exclusive with

specifying a primary key at the end of the CREATE TABLE statement.

 You can identify a primary key at the column level when the columns that

make up the primary key for the table are defined in ordinal sequence within

the table definition.

Record arrays for IMS

Record array definitions are used to identify and handle data that can repeat

multiple times within a non-DB2 database or file system.

Syntax

�� BEGINLEVEL level-number OFFSET relative-offset LENGTH occurrence-length �

� OCCURS number-of-occurances

MAXOCCURS

maximum-occurances

DEPENDING ON COLUMN

column-name

MAXOCCURS

maximum-occurances

NULL IS

null-value

column-name

EQUAL

,

 �

�
ENDLEVEL

level-number
 ��

Chapter 2. IMS 31

Parameters

BEGINLEVEL level-number

 Identifies the start of a record array.

 The level-number on a BEGINLEVEL or ENDLEVEL definition identifies the

nesting level of the record array within the parent fragment. Multiple record

arrays can exist with the same level-number. However, these situations within a

single table represent a questionable mapping. Ideally you should create

separate tables for each record array that exists at the same level. The reason is

that when accessing these kinds of tables, for a single database access, the

query processor can generate the Cartesian product for the maximum

occurrences of all record arrays that are defined.

 The following example shows a multiple record array. In this example, the

EMPL-ADDRESS data item occurs three times and the EMPL-DEPENDENTS,

EMPL-DEP-NAME and EMPL-DEP-DOB data items occur ten times. By default

the query processor generates 30 rows for each EMPL-RECORD read.

 If the information in the above example needs to be accessed in a single table

definition, then two record array definitions are required. These record arrays

are both level number 1 arrays because the employee address information

exists first and repeats three times followed by the employee dependent

information that occurs ten times.

OFFSET relative-offset

 The relative offset identifies the relative starting position of the record array

within the segment or within a parent record array definition.

 The relative offset is a required numeric parameter.

LENGTH occurrence-length

 Iidentifies the length in bytes of one occurrence of the repeating data.

MAXOCCURS maximum-occurrences DEPENDING ON COLUMN column-name

 Identifies a record array that occurs a variable number of times. The number of

actual instances that exist in a particular database record is identified by the

contents of a column definition that exists before the record array definition.

 The following example uses an OCCURS DEPENDING ON COLUMN clause

that defines a variably occurring record array. In this example, the

EMPL-DEP-COUNT data item identifies the number of dependents that exist

in the EMPL-DEPENDENTS record array.

01 EMPL-RECORD

 05 EMPL-SSN PIC 9(9)

 05 EMPL_NAME

 10 EMPL-LAST PIC X(30)

 10 EMPL_FIRST PIC X(30)

 10 EMPL_MI PIC X

 05 EMPL-ADDRESS PIC X(30) OCCURS 3 TIMES

 05 EMPL-DEPENDENTS OCCURS 10 TIMES

 10 EMPL-DEP-NAME PIC X(30)

 10 EMPL-DEP-DOB PIC 9(8)

Figure 6. Example of a multiple record array

32 SQL Reference for Classic Federation and Classic Data Event Publishing

You cannot map columns that occur after a variable length array, because the

starting offsets of data items that are defined after an OCCURS DEPENDING

ON definition are not at a fixed offset. The starting offsets float from one

record instance to the next, based on the actual number of occurrences that are

identified by the contents of the DEPENDING ON data item. The Classic

federation servers do not currently support calculated field offsets, and you

cannot access these fields.

 The maximum-occurrences value must be a numeric value, and column-name

must specify the name of a column in the table. The control column must

contain a numeric value. The query process supports SQL types of SMALLINT,

INTEGER, DECIMAL, or CHAR (if the column contains zoned decimal data).

MAXOCCURS maximum-occurrences NULL IS

 Defines a record array that repeats a fixed number of times. You specify a

value that denotes a null value. When a column in the record array contains

the specified value, the content of the column is interpreted as null.

 The maximum-occurrences value must be numeric. The null-value is a character

string of up to 32 characters. The null-value can also be a 67-character

hexadecimal string that consists of 64 hexadecimal nibbles, the leading x, and

the surrounding quotation marks.

 The minimal definition for this kind of array structure has the NULL IS

keyword followed by the null-value string. With this syntax, a record array

element contains null values based on the length of the null-value string. If the

start of the column data matches the null-value then that instance of the

repeating group of columns or record arrays is null. For example, a null-value

of x’4040’ is specified; the null value length is 2 and if the first two bytes of a

record entry match the null value the entry is null. Processing of the array

contents is skipped and the next element in the record array is inspected.

 Elements or the array are processed like this:

1. The first element in the record array is located based on the relative-offset

information.

The physical location is computed based on the parent fragment offset

information.

2. The second through nth instances starting locations are determined by

incrementing the physical location by the occurrence length value.

Alternatively, you can check the entire contents of a record array to determine

if it contains a null value by using the ALL keyword. For example, the syntax

is NULL IS ALL null-value. With this form, only a single character of null

value data can be supplied in either character or hexadecimal format.

01 EMPL-RECORD

 05 EMPL-SSN PIC 9(9)

 05 EMPL_NAME

 10 EMPL-LAST PIC X(30)

 10 EMPL_FIRST PIC X(30)

 10 EMPL_MI PIC X

 05 EMPL-ADDRESS PIC X(30) OCCURS 3 TIMES

 05 EMPL-DEP-COUNT PIC S9(4) COMP

 05 EMPL-DEPENDENTS OCCURS 10 TIMES

 DEPENDING ON EMPL-DEP-COUNT

 10 EMPL-DEP-NAME PIC X(30)

 10 EMPL-DEP-DOB PIC 9(8)

Figure 7. Example of an OCCURS DEPENDING ON defintion

Chapter 2. IMS 33

When you add column-name EQUAL to the NULL IS clause, the null checking

for a record array element is confined to the contents of a single column.

Ideally, the column needs to exist within the record array. However, that

column is not a requirement.

 When column-level null checking is requested, the same kinds of options are

available as with entry-level checking. The same kinds of errors can be

generated. If the ALL keyword is not specified, then the contents of the column

in each record array entry is checked to see if it matches the supplied value. If

so, the entry is null and its contents are ignored. Likewise if the ALL keyword

is supplied, only a single character null value can be specified. The entire

contents of the column are checked to see if a record array instance is null and

therefore ignored.

ENDLEVEL level-number

Identifies the end of the definition.

CREATE INDEX statement for IMS

You can use the CREATE INDEX statement to define an index that references the

columns that make up the IMS primary key (FIELD). You can also define an index

that references the columns that map to the SRCH fields in the XDFLD statement

of a secondary index definition to access the IMS database.

Indexes identify columns in a table that correspond to a physical index that is in

the source database. The query processor uses the contents of the columns that are

referenced in a WHERE clause to create the index. The query processor attempts to

build either a full key value to use in database access or a partial key value. The

partial key can be used to perform a range scan against the target database to

reduce the number of records that are accessed.

Although you might not be able to define an index against columns that

correspond to the primary key, you can identify these columns as primary key

columns. This primary key information does not affect existing connector index

selection and access optimization. The primary key information is made available

for use by front-end tools and for replication purposes, where key information is

either required or beneficial.

Syntax

�� CREATE INDEX index_name

UNIQUE
 ON table_name �

�

�

 ,

ASC

(

column_name

)

;

DESC

FIELDNAME

IMS_field_name

�

34 SQL Reference for Classic Federation and Classic Data Event Publishing

�

�

�

 ;

PCBPREFIX

PCB_name_prefix

,

PCBNAME

(

PCB_name

)

,

PCBNUM

(

PCB_number

)

(

count

)

 ��

Parameters

CREATE INDEX index_name

 Identifies the SQL statement as an index definition statement. A unique index

does not have any restrictions about the columns that make up the index. For

example, a unique index column can contain null values.

 If qualified, the index name is a two-part name, and the authorization ID that

qualifies the name is the owner of the index. If an unqualified table name is

supplied, the owner name is the authorization ID from the CURRENT SQLID

special register.

ON table_name

 Identifies the table for which the index is being defined. The table name can be

a qualified or unqualified table name. For unqualified names, the table owner

is from the CURRENT SQLID special register.

 The table name is validated with the standard syntax checks that are associated

with identifiers, and then the existence of the table is verified. Do not define an

index on a view.

column_name ASC/DESC

 Specifies column names that make up the index key. Optionally, you can

identify whether the column is stored or accessed in ascending (ASC) or

descending (DESC) key sequence. By default, the key is in ascending key

sequence.

 There are no fixed limits on the number of columns that you can identify as

key columns for an index. The only requirements are as follows:

v The column must exist in the table.

v The column must map to what constitutes a key in the target database. In

most cases, this determination is based on the starting offset and length of

the column as compared to the starting offset and length of the key in the

target database.

v The column cannot overlap another column within the key definition. This

determination is based on the starting offset and length of a column as

compared to the starting offsets and length of the other columns that are

identified as key columns for the index definition.

v For the key column, generally varying length and graphic data types are not

supported.

Any kind of varying-length character or graphic string is not allowed.
If the CREATE TABLE statement specifies a segment for the INDEXROOT

keyword and that segment is not a root segment, the key columns can only

reference an XDFLD that is defined by INDEXROOT. The key columns

Chapter 2. IMS 35

reference offsets and lengths in the source segment that the XDFLD references.
If INDEXROOT is not specified in the CREATE TABLE statement or the

segment is the root segment for the DBD, key columns can be specified for any

XDFLD and can reference columns that map to the primary key sequence field

of the database.

If DBD_name in the CREATE TABLE statement references a logical DBD, the

key columns can reference an XDFLD in either of the physical segments that

are referenced by the INDEXROOT segment. However, if INDEXROOT is not

specified in the CREATE TABLE statement or the segment is the root segment

for the DBD, primary key references are supported only for the first physical

database that is referenced by the logical DBD.
If the index is defined against the root segment of the database and the

DBD_NAME in the CREATE TABLE statement is a DEDB, HDAM or PHDAM

database, the index cannot consist of key columns that reference the primary

key sequence field of the IMS database. This also holds true if the DBD_NAME

in the CREATE TABLE statement references a logical database and the root

segment of the first physical database is a DEDB, HDAM or PHDAM database

PCBPREFIX PCB_name_prefix

Identifies the PCBs that access the IMS database when the index is selected

based on the WHERE clause. PCB_name prefix is 1 to 7 characters in length and

follows IMS PCB naming conventions.

 If a PCBPREFIX is in the IMS CREATE TABLE statement, you must specify a

PCBPREFIX in the CREATE INDEX statement. When the index accesses the

table, the index-level PCBPREFIX is used in preference to any PCB prefix

information at the table level.

 If the index corresponds to the primary key sequence field of the IMS

database, the IMS PCB definitions that correspond to the PCBPREFIX

information must not contain a PROCSEQ definition.

 Also, if the index definition corresponds to an XDFLD definition, the PCBs

must contain a PROCSEQ. This process identifies the secondary index DBD

that corresponds to the XDFLD that the index key columns match.

PCBNAME (PCB_name,...)

Specifies up to 5 PCBs that access an IMS database through a table. Multiple

PCBs are required if the same table is referenced more than once in an SQL

statement, or when the same PCB is associated with more than one table and

these additional tables are referenced in a single SQL statement.

 Each PCB name in the list can be up to 8 characters long. For multiple PCB

names, separate each name by a comma.

PCBNUM (PCB_number (count),...)

Specifies a number of PCBs to access the IMS database for the table. Multiple

PCBs are required under either of these conditions:

v The same table is referenced more than once in an SQL statement.

v The same PSB is associated with more than one table, the PCBs in the PSB

have sensitivity to the segments that the table is accessing, the same PCB

ordinal numbers are specified for these tables, and these additional tables

are referenced in a single SQL statement.

You can specify up to ten sets of PCB number ranges. These PCB numbers can

be listed in any order and represent the order in which a PSB is checked to

determine whether a PCB is used to access the IMS database.

 For each item in the list, two different formats are used to identify the PCB

numbers to be checked. The simplest method is to identify the PCB numbers to

36 SQL Reference for Classic Federation and Classic Data Event Publishing

be checked separated by commas. The second technique identifies a range

specification that consists of a starting PCB number that is followed by

parenthesis and a number that identifies the number of PCBs to be checked

from the starting number.

 For either technique, the PCB number represents the relative 1 ordinal number

of the PCB that is to be checked. Because an I/O PCB needs to be defined in

each PSB that Classic Federation uses, the minimum practical PCB number that

can be specified starts at two.

Example

The following is an example of a CREATE INDEX statement for IMS.

CREATE UNIQUE INDEX CXAIMS.IMSALDB_IDX1 ON CXAIMS.IMSALDB (ALDBIMSKEY ASC);

ALTER TABLE statement for IMS

You can use the ALTER TABLE statement to create tables that reference an IMS

database.

Authorization

You must have the one of the following authorities to run the ALTER TABLE

statement:

v SYSADM

v DBADM for the database type that is referenced in the DBNAME column for the

table being altered

v Ownership of the table being altered

Syntax

�� ALTER TABLE table-name DATA CAPTURE CHANGES ;

NONE
 ��

Parameters

table-name

Identifies the table for which the DATA CAPTURE flag is being altered. The

table name can be a qualified or unqualified table name. If an unqualified

name is supplied, the table owner is from the CURRENT SQLID special

register.

DATA CAPTURE

 Indicates that the ALTER TABLE statement is setting the value of the DATA

CAPTURE flag.

CHANGES

Allows a change-capture agent to capture changes to the non-relational

data that the table is mapped to.

NONE

Disallows change-capture agents to capture changes to the non-relational

data that the table is mapped to.

Chapter 2. IMS 37

Example

The following is an example of an ALTER TABLE statement for IMS.

ALTER TABLE CXAIMS.IMSALDB DATA CAPTURE CHANGES;

38 SQL Reference for Classic Federation and Classic Data Event Publishing

Chapter 3. VSAM

You can use the CREATE TABLE and ALTER TABLE statements to define tables

that reference VSAM files. You can use the CREATE INDEX statement to define

indexes that reference VSAM files.

CREATE TABLE statement for VSAM

You can use the CREATE TABLE statement to define a logical table that references

a VSAM file.

Authorization

The connected user ID must have one of the following privileges to run the

CREATE TABLE statement:

v SYSADM

v DBADM for the database type that is referenced in the DBTYPE clause

The owner has all table privileges on the table (such as SELECT, UPDATE, and so

on) and the authority to drop the table. The owner can grant equivalent use

privileges on the table.

Syntax

�� CREATE TABLE table-name DBTYPE VSAM DD DD-name

DS

dataset-name
 �

�
CICS_connection_information

 �

�
RECORD EXIT

exit-name

MAXLENGTH

length

 �

�

�

 ,

(

column_definition

record_array_definition

�

�

�

);

,

,

PRIMARY KEY

(

column-name

)

 ��

© Copyright IBM Corp. 2007 39

CICS_connection_information:

 CICS APPLID local-LU-name CICS-LU-name LOGMODE logmode-name �

� TRANID CICS-transaction-ID

NETNAME

network-name

Parameters

authorization-ID.table-name

 Identifies the owner of the table and the name of the table that you want to

create.

 If you do not provide an authorization ID, the ID in the CURRENT SQLID

special register is used.

 You must create more than one table if you map to a database or a file that

meets either of these criteria:

v The database or file contains repeating data.

v The database or file contains information about one or more distinct

sub-objects, because the database or file is not designed to follow the third

normalization rules, which are part of the standards to eliminate

redundancies and inconsistencies in table data. In a table designed according

to third normalization rules, each non-key column is independent of other

non-key columns, and is dependent only upon the key.

DBTYPE VSAM

 Specifies that the CREATE TABLE statement defines a logical table that

references a VSAM file.

DD DD-name

 Specifies the VSAM file that the table maps to. Specifies either a local file

reference or a reference to a CICS file definition table (FDT) entry name.

 If DD-name represents a local file reference, a DD clause that references the

VSAM file must exist in the Classic federation data server JCL.

 If DD-name references an FDT entry name, you must specify CICS connection

information with the CICS_connection_information clause.

 DD-name must correspond to a cluster or alternate index path definition for a

VSAM ESDS, KSDS or RRDS data set.

 DD-name is a short native identifier that conforms to the naming conventions

for a z/OS JCL DD statement.

DS data-set-name

 Specifies the VSAM file that the table definition accesses. Designates a VSAM

cluster definition or a PATH component when the VSAM file is accessed from

a VSAM alternate index.

 The data set name must correspond to a cluster or alternate index path

definition for a VSAM ESDS, KSDS or RRDS data set.

 The name can be 1 to 44 characters in length and follows z/OS naming

conventions for VSAM data sets.

CICS_connection_information

40 SQL Reference for Classic Federation and Classic Data Event Publishing

Specifies CICS connection information that is required only if your VSAM files

are managed by CICS.

 For Classic federation, you must specify CICS connection information that

identifies the CICS subsystem where the VSAM file is located.

 For Classic event publishing or replication, you must specify CICS connection

information to allow validation processing and to collect information about file

attributes.

 CICS APPLID

Specifies the names of two logical units (LUs) that establish communication

with the target CICS subsystem.

local-LU-name

This value identifies the name of a local LU that is used to

communicate with CICS. This identifier is one to eight characters in

length. local-LU-name corresponds to either the ACBNAME or the name

(label) on the VTAM APPL definition. local-LU-name must be active on

the image where the server runs.

 The name follows VTAM naming conventions. The SASCSAMP

member CACCAPPL provides the sample local LU definitions. The

sample names for local-LU-name are CACCICS1 and CACCICS2, which

you can modify. Define the name to CICS as a CONNECTION

definition. Sample connection definitions for CACCICS1 and

CACCICS2 are in SASCSAMP member CACCDEF.

CICS-LU-name

Designates the VTAM LU 6.2 definition that a CICS region listens on

for connection requests. This LU name is 1 to 8 characters in length.

The name corresponds to the value of the APPLID parameter in the

system initialization definition (DFHSIT macro) of the target CICS

subsystem where the VSAM file is located. The name follows VTAM

naming conventions.

LOGMODE logmode-name

Identifies the name of the VTAM log mode table that controls session

establishment and the service-level properties of the session that CICS

determines. The name is a short native identifier that designates the name

of the VTAM logon-mode table that controls the session parameters for the

conversation that is established between the local LU and the CICS LU.

This name is 1 to 8 characters in length. The logon-mode table name

corresponds to a z/OS load module that is accessible to VTAM. The

definition for a Classic logon-mode table is in SASCSAMP member

CACCMODE.

TRANID CICS-transaction-ID

Performs the following functions:

v Identifies the name of the Classic-supplied transaction that verifies the

existence of the VSAM file

The name of the CICS transaction is used for data access and validation

purposes. This name is 1 to 4 characters in length. In prior releases,

CICS-transaction-ID was for data access only, and a separate transaction

performed validation checking. In version 9.1, these two CICS transactions

are combined. CICS-transaction-ID corresponds to the CICS

TRANSACTION definition.

Chapter 3. VSAM 41

The SCACSAMP member CACCDEFS provides sample CICS transaction,

connection, program, and session definitions. The sample

CICS-transaction-ID identifier is EXV1, which you can modify.

NETNAME network-name

 Enables the federation data server to communicate with a remote CICS

system by identifying the name of the network where the CICS subsystem

is running.

 The name of the network where CICS-LU-name resides corresponds to the

CICS subsystem that accesses a VSAM file. This identifier is 1 to 8

characters in length.

 The name is identified on the NETWORK VTAM macro definition on the

local image to identify the remote SNA network where the CICS subsystem

resides.

 The name follows VTAM naming conventions.

RECORD EXIT exit-name

 Identifies that a record processing exit is invoked for post processing, after a

record is retrieved from the VSAM file. The record processing exit is also called

for preprocessing before a VSAM record is inserted or updated. The record exit

is used for altering the record contents or filtering specified records.

 The record processing exit is not used in change capture.

 The name is a short identifier that follows the naming conventions for a z/OS

load module.

column_definition

Provides SQL descriptions of the contents of the VSAM file. Column mapping

must be based on COBOL copybook definitions.

 A table must contain at least one column and can contain up to 5,000 columns.

Columns are named, and each name must be unique within the table.

record_array_definition

 Identifies repeating data. Record array definitions contain column definitions

and possibly more record array definitions.

 Federated queries can use record array definitions if you create a separate table

for each array. Change capture can use record arrays if you map the columns in

a flattened structure that provides a separate column for each array instance

and field.

 Federated queries

 For federated queries, define multiple tables. Each table consists of a single

record array definition that contains the column definitions unique to a single

array instance. Any given column appears in each instance of the array. Using

the example of employee dependents, the table structure looks like this:

 Table 5. Structure of an array mapped to a Dependents table.

KEY DEP_LAST_NAME DEP_FIRST_NAME DEP_GENDER DEP_SSN DEP_DOB

 One common reason to create multiple table definitions for a database or file is

that a table contains multiple, non-nested record arrays with a fixed number of

instances. When the table has multiple arrays and instances, queries that

reference the table yield result sets that are too large.

42 SQL Reference for Classic Federation and Classic Data Event Publishing

You can use an algorithm to calculate the number of rows in the result set

from a query on a table that contain arrays, before any filtering predicates that

are supplied on the WHERE clause. The number of rows in the result set is the

Cartesian product of:

 v The product of the instances in each record array

v The number of physical records

In this example, if:

 1. The employee has:

v Four dependents

v Two emergency contacts

v Three assignments
2. The database has ten employee records

Then a query generates 4 * 2 * 3 * 10 = 240 rows in the result set, and 24

rows for each employee record.

 Another scenario is that a record has multiple arrays, and the last array has a

variable length (in this example, the number of dependents is unknown). With

variable-length arrays, you can’t calculate the actual number of rows in the

result set.

 You cannot map columns that appear in a table subsequent to variable-length

arrays at all, because these columns do not appear at a predictable offset.

 Another common reason to create multiple table definitions for a database or

file is that the database or file contains redefined information. The database

record or segment consists of fixed information that includes a type code field

that identifies the remaining contents of the record or segment.

 For read-only queries, you can supply filtering information in a view definition

that applications use when they need to access data for a given record type.

You cannot perform updates against a view, however. If an application needs

to update a database or file containing redefined information, then the

application must use the base table name with WHERE filtering.

 To query redefined information, define multiple logical tables — one for each

type of record.

 1. Each table must contain columns that identify common key information

and a column for the type code field.

2. These columns are followed by type-specific columns.

3. When accessing these tables, do one of the following:

v Supply a WHERE clause to filter the records based on the type code

value.

v Create a view with the WHERE clause and query the view.

Change capture

 You cannot map record array definitions for change capture. If you want to map

record arrays for change capture, map the columns in a flattened structure that

provides a separate column for each array instance and field. For example, say

you map a record array for employee dependents that contains five fields:

 1. DEP_LAST_NAME

Chapter 3. VSAM 43

2. DEP_FIRST_NAME

3. DEP_GENDER

4. DEP_SSN

5. DEP_DOB

If you want to support up to ten dependents, you must map 50 columns with

names that uniquely identify each instance and field. In this example, the

column names range from DEP_LAST_NAME_1 to DEP_DOB_50.

 Change capture does not currently support record array definitions, because

change capture must send one notification per change. In this example, a

message describing an update to a single field in the employee table inserts ten

rows of changed data in the logical table on the data server — one for each

dependent.

 Another unsupported scenario is adding a new dependent to an array that

uses a DEPENDING ON or similar clause. In this example, database operations

calculate the number of dependents on the fly, based on the value of a column

that stores the number of dependents, such as EMPL_DEP_COUNT. Adding a

new dependent updates a single record in the source database, but the change

inserts a new row into the logical table on the data server.

 Flatten the structure of your logical table to avoid the confusing insert and

update logic in scenarios like those described here. Event publishing

applications that consume the data cannot process the logic.

PRIMARY KEY column-name

Specifies the column names that uniquely identify each record in the VSAM

file. Depending upon the type of VSAM file that the CREATE TABLE

references, statement specification of primary key columns might not be

appropriate.

 Corresponds to what constitutes the target database or file system equivalent

of a primary key. The columns might represent the set of columns that

logically identify a unique row. If there are multiple ways to identify a unique

row, then multiple tables should be created. Each table would have a different

primary key made up of the set of columns that uniquely identifies each

record.
You can use either of two approaches to define a primary key. Use the

following criteria to determine whether to specify the PRIMARY KEY clause on

the column definition or the CREATE TABLE statement.

v If the columns that make up a composite key are defined in the same

sequence as represented by the actual primary key, PRIMARY KEY can be

specified on the column definitions. When this form of primary key

identification is used, the sequence in which the columns are identified

represents the ordinal position that you must use to construct a composite

key that uniquely identifies a row in the table.

v When PRIMARY KEY information is specified on the main CREATE TABLE

statement, the columns do not need to be defined in ordinal sequence.

Example

The following is an example of a CREATE TABLE statement for VSAM that change

capture cannot use. This table includes an array to capture data about employee

dependents, but the number of array occurrences depends on the number of

44 SQL Reference for Classic Federation and Classic Data Event Publishing

dependents, that is to say, the value of EMPL_DEP_COUNT. Change capture

cannot use arrays of this type. An ALTER statement on the table will fail.

CREATE TABLE "DBA"."EMPLOYEE" DBTYPE VSAM

 DS "SAMPLE.VSAM.EMPLOYEE"

 (

 "EMPL_LAST_NAME" SOURCE DEFINITION

 DATAMAP OFFSET 0 LENGTH 20

 DATATYPE C

 USE AS CHAR(20),

 "EMPL_FIRST_NAME" SOURCE DEFINITION

 DATAMAP OFFSET 20 LENGTH 20

 DATATYPE C

 USE AS CHAR(20),

 "EMPL_GENDER" SOURCE DEFINITION

 DATAMAP OFFSET 40 LENGTH 1

 DATATYPE C

 USE AS CHAR(1),

 "EMPL_SSN" SOURCE DEFINITION

 DATAMAP OFFSET 41 LENGTH 9

 DATATYPE UC

 USE AS CHAR(9),

 "EMPL_DOB" SOURCE DEFINITION

 DATAMAP OFFSET 50 LENGTH 4

 DATATYPE UP

 USE AS DECIMAL(6 , 0),

 "EMPL_ADDRESS_1" SOURCE DEFINITION

 DATAMAP OFFSET 54 LENGTH 20

 DATATYPE C

 USE AS CHAR(20),

 "EMPL_ADDRESS_2" SOURCE DEFINITION

 DATAMAP OFFSET 74 LENGTH 20

 DATATYPE C

 USE AS CHAR(20),

 "EMPL_STATE" SOURCE DEFINITION

 DATAMAP OFFSET 96 LENGTH 2

 DATATYPE C

 USE AS CHAR(2),

 "EMPL_ZIP" SOURCE DEFINITION

 DATAMAP OFFSET 98 LENGTH 5

 DATATYPE UC

 USE AS CHAR(5),

 "EMPL_DEP_COUNT" SOURCE DEFINITION

 DATAMAP OFFSET 103 LENGTH 2

 DATATYPE UH

 USE AS SMALLINT,

 "EMPL_COUNT" SOURCE DEFINITION

 DATAMAP OFFSET 105 LENGTH 2

 DATATYPE UH

 USE AS SMALLINT,

 BEGINLEVEL 1 OFFSET 107 LENGTH 54

 MAXOCCURS 20

 DEPENDING ON COLUMN "EMPL_DEP_COUNT",

 "DEP_LAST_NAME" SOURCE DEFINITION

 DATAMAP OFFSET 0 LENGTH 20

 DATATYPE C

 USE AS CHAR(20),

 "DEP_FIRST_NAME" SOURCE DEFINITION

 DATAMAP OFFSET 20 LENGTH 20

 DATATYPE C

 USE AS CHAR(20),

 "DEP_GENDER" SOURCE DEFINITION

 DATAMAP OFFSET 40 LENGTH 1

 DATATYPE C

 USE AS CHAR(1),

 "DEP_SSN" SOURCE DEFINITION

Chapter 3. VSAM 45

DATAMAP OFFSET 41 LENGTH 9

 DATATYPE UC

 USE AS CHAR(9),

 "DEP_DOB" SOURCE DEFINITION

 DATAMAP OFFSET 50 LENGTH 4

 DATATYPE UP

 USE AS DECIMAL(6 , 0),

 ENDLEVEL 1);

The following is another example of a CREATE TABLE statement for VSAM,

which creates an array that captures the same data about employee dependents as

in the previous example. This table maps the array in a flattened structure that

includes a column for each array instance. Change capture can use arrays of this

type.

CREATE TABLE "DBA"."EMPLOYEE_EP" DBTYPE VSAM

 DS "SAMPLE.VSAM.EMPLOYEE"

 XM URL "XM1/DS1/QUE1"

 (

 "EMPL_LAST_NAME" SOURCE DEFINITION

 DATAMAP OFFSET 0 LENGTH 20

 DATATYPE C

 USE AS CHAR(20),

 "EMPL_FIRST_NAME" SOURCE DEFINITION

 DATAMAP OFFSET 20 LENGTH 20

 DATATYPE C

 USE AS CHAR(20),

 "EMPL_GENDER" SOURCE DEFINITION

 DATAMAP OFFSET 40 LENGTH 1

 DATATYPE C

 USE AS CHAR(1),

 "EMPL_SSN" SOURCE DEFINITION

 DATAMAP OFFSET 41 LENGTH 9

 DATATYPE UC

 USE AS CHAR(9),

 "EMPL_DOB" SOURCE DEFINITION

 DATAMAP OFFSET 50 LENGTH 4

 DATATYPE UP

 USE AS DECIMAL(6 , 0),

 "EMPL_ADDRESS_1" SOURCE DEFINITION

 DATAMAP OFFSET 54 LENGTH 20

 DATATYPE C

 USE AS CHAR(20),

 "EMPL_ADDRESS_2" SOURCE DEFINITION

 DATAMAP OFFSET 74 LENGTH 20

 DATATYPE C

 USE AS CHAR(20),

 "EMPL_STATE" SOURCE DEFINITION

 DATAMAP OFFSET 96 LENGTH 2

 DATATYPE C

 USE AS CHAR(2),

 "EMPL_ZIP" SOURCE DEFINITION

 DATAMAP OFFSET 98 LENGTH 5

 DATATYPE UC

 USE AS CHAR(5),

 "EMPL_DEP_COUNT" SOURCE DEFINITION

 DATAMAP OFFSET 103 LENGTH 2

 DATATYPE UH

 USE AS SMALLINT,

 "EMPL_COUNT" SOURCE DEFINITION

 DATAMAP OFFSET 105 LENGTH 2

 DATATYPE UH

 USE AS SMALLINT,

 "DEP_LAST_NAME_1" SOURCE DEFINITION

 DATAMAP OFFSET 107 LENGTH 20

 DATATYPE C

46 SQL Reference for Classic Federation and Classic Data Event Publishing

USE AS CHAR(20),

 "DEP_FIRST_NAME_1" SOURCE DEFINITION

 DATAMAP OFFSET 127 LENGTH 20

 DATATYPE C

 USE AS CHAR(20),

 "DEP_GENDER_1" SOURCE DEFINITION

 DATAMAP OFFSET 147 LENGTH 1

 DATATYPE C

 USE AS CHAR(1),

 "DEP_SSN_1" SOURCE DEFINITION

 DATAMAP OFFSET 148 LENGTH 9

 DATATYPE UC

 USE AS CHAR(9),

 "DEP_DOB_1" SOURCE DEFINITION

 DATAMAP OFFSET 157 LENGTH 4

 DATATYPE UP

 USE AS DECIMAL(6 , 0),

 "DEP_LAST_NAME_2" SOURCE DEFINITION

 DATAMAP OFFSET 161 LENGTH 20

 DATATYPE C

 USE AS CHAR(20),

 "DEP_FIRST_NAME_2" SOURCE DEFINITION

 DATAMAP OFFSET 181 LENGTH 20

 DATATYPE C

 USE AS CHAR(20),

 "DEP_GENDER_2" SOURCE DEFINITION

 DATAMAP OFFSET 201 LENGTH 1

 DATATYPE C

 USE AS CHAR(1),

 "DEP_SSN_2" SOURCE DEFINITION

 DATAMAP OFFSET 202 LENGTH 9

 DATATYPE UC

 USE AS CHAR(9),

 "DEP_DOB_2" SOURCE DEFINITION

 DATAMAP OFFSET 211 LENGTH 4

 DATATYPE UP

 USE AS DECIMAL(6 , 0),

 "DEP_LAST_NAME_3" SOURCE DEFINITION

 DATAMAP OFFSET 215 LENGTH 20

 DATATYPE C

 USE AS CHAR(20),

 "DEP_FIRST_NAME_3" SOURCE DEFINITION

 DATAMAP OFFSET 235 LENGTH 20

 DATATYPE C

 USE AS CHAR(20),

 "DEP_GENDER_3" SOURCE DEFINITION

 DATAMAP OFFSET 255 LENGTH 1

 DATATYPE C

 USE AS CHAR(1),

 "DEP_SSN_3" SOURCE DEFINITION

 DATAMAP OFFSET 256 LENGTH 9

 DATATYPE UC

 USE AS CHAR(9),

 "DEP_DOB_3" SOURCE DEFINITION

 DATAMAP OFFSET 265 LENGTH 4

 DATATYPE UP

 USE AS DECIMAL(6 , 0),

 "DEP_LAST_NAME_4" SOURCE DEFINITION

 DATAMAP OFFSET 269 LENGTH 20

 DATATYPE C

 USE AS CHAR(20),

 "DEP_FIRST_NAME_4" SOURCE DEFINITION

 DATAMAP OFFSET 289 LENGTH 20

 DATATYPE C

 USE AS CHAR(20),

 "DEP_GENDER_4" SOURCE DEFINITION

 DATAMAP OFFSET 309 LENGTH 1

Chapter 3. VSAM 47

DATATYPE C

 USE AS CHAR(1),

 "DEP_SSN_4" SOURCE DEFINITION

 DATAMAP OFFSET 310 LENGTH 9

 DATATYPE UC

 USE AS CHAR(9),

 "DEP_DOB_4" SOURCE DEFINITION

 DATAMAP OFFSET 319 LENGTH 4

 DATATYPE UP

 USE AS DECIMAL(6 , 0));

Columns for VSAM

Column definitions are a part of CREATE TABLE statements. You use column

definitions to define the columns in a table that references a VSAM file. There are

no differences between a sequential column definition and the generic column

definitions.

Syntax

�� column-name SOURCE DEFINITION DATAMAP OFFSET relative-offset �

� LENGTH length

DATATYPE

C

P

D

F

H

V

UC

UP

UH

UF

 �

�
INDEX

SECONDARY

DD

DD name

DD

dataset name

 �

� USE AS CHAR (length)

VARCHAR

(

length

)

LONG VARCHAR

GRAPHIC

(

length

)

VARGRAPHIC

(

length

)

LONG VARGRAPHIC

INTEGER

SMALLINT

DECIMAL

(

precision, scale

)

DECIMAL

(

precision

)

FLOAT

(

precision

)

REAL

DOUBLE PRECISION

USE RECORD LENGTH
 �

48 SQL Reference for Classic Federation and Classic Data Event Publishing

�
 WITHOUT CONVERSION

WITH CONVERSION

field procedure name

NULL IS

null value

�

�
PRIMARY KEY

 ��

Parameters

column_name

Identifies the name of the column.

 Specifies the column name that is a long identifier. Column names cannot be

qualified with a CREATE TABLE statement.

DATAMAP

Specifies the relative offset for a column. If a LENGTH keyword is specified,

information about the length of the column is also defined.

OFFSET relative_offset

 Follows the DATAMAP keyword to set the offset for the column. For some

data sources like Adabas and CA-IDMS, explicit offset and length information

does not need to be supplied because the system data dictionaries can provide

this information. In these cases, the column definition does not provide offset

information. The column definition only identifies the element or field name

that the column corresponds to in the data source data dictionary. If a column

definition references a portion of a dictionary element or field, the grammar

supports specifying column offset and length within the element or field. The

column definition can identify the column offset of the start of the column and

the length of the element or field that the column is being mapped to.

 The relative offset identifies the relative zero offset of the starting position of

the column within the object that the column is associated with. For simple

objects like a VSAM or sequential file, the offset is generally measured from

the start of the record. For more complex databases, like IMS or CA-IDMS, the

relative offset is measured from the start of a segment or record. If the column

is defined within a record array, then the relative offset is measured from the

start of the record array that is measured from the start of the fragment that

the column is associated with.

Note: Columns do not need to be defined in ascending relative offset starting

sequence. When a mapping contains fixed length record arrays with additional

columns following the record array, the starting offsets typically increase for

the columns before the record array definition. For the columns in the record

array, the relative offset information is reset to one and to larger numbers for

those columns that exist after the record array.

LENGTH length

 Specifies the length of the column. Generally, inconsistencies between the

length that is specified using the LENGTH keyword and the length that is

obtained from the SQL data type definition on the USE AS clause are ignored.

For native DECIMAL data types the LENGTH must match the computed

physical length of the column, based on the precision and scale specified in the

USE AS clause when the USE AS precision is non-zero. For USE AS DECIMAL

definitions the LENGTH must match the computed physical length of the

column when the scale is non-zero and greater than the precision.

Chapter 3. VSAM 49

Additionally, differences between the length and the SQL length specification

for VARCHAR and VARGRAPHIC data types identify how to interpret the

length attribute for the varying length column. The following rules are applied

for VARCHAR data types:

v If the length and the VARCHAR lengths are identical, then the control length

is assumed to include the length (2 bytes) that is taken up by the control

length component.

v If the length is two bytes greater than the VARCHAR length, then the control

length component is assumed to identify the actual length of the data.

For a varying length graphic string, the same kind of conventions are used.

However, the lengths are expressed in DBCS characters. Therefore the rules are

as follows:

v If the length and the VARGRAPHIC lengths are identical, then the control

length is assumed to include the length (1 DBCS character, which is 2 bytes)

that is taken up by the control length of a component.

v If the length is one character greater (two bytes) than the VARGRAPHIC

length, then the control length component is assumed to identify the actual

length of the data in characters.

Generally, the USE AS length must match the length value specified. However,

for VARCHAR, the length can be two bytes off. For VARGRAPHIC, the length

can be different by one. For these data types, the differences do not represent a

conflict.

DATATYPE

 Identifies the native format of the column.

 The following table identifies the basic native data types.

 Table 6. Native data types

DATATYPE value Contents

Standard SQL data

type

Other SQL data

types

C Mixed mode

character data. When

the SQL data type is

DECIMAL, the data

is assumed to consist

wholly of numbers

with the right most

number identifying

the sign.

CHAR DECIMAL,

VARCHAR,

GRAPHIC, or

VARGRAPHIC

P Packed decimal data

where the sign is

stored in the far right

aggregation of four

bits.

DECIMAL N/A

D1 Floating point data.

The columns length

or precision

determines whether

the SQL data type is

REAL or DOUBLE

PRECISION.

REAL or DOUBLE

PRECISION

N/A

50 SQL Reference for Classic Federation and Classic Data Event Publishing

Table 6. Native data types (continued)

DATATYPE value Contents

Standard SQL data

type

Other SQL data

types

F 32 bit signed binary

value where the sign

is in the high order

bit.

INTEGER N/A

H 16 bit signed binary

value where the sign

is in the high order

bit.

SMALLINT N/A

V Variable mixed mode

character data, where

the actual data is

preceded by a 16 bit

signed binary number

that identifies the

actual length of the

data.

VARCHAR LONG VARCHAR,

VARGRAPHIC, or

LONG

VARGRAPHIC

UC Unsigned zoned

decimal data where

the last character

does not identify the

sign. The value is

always a positive

value.

DECIMAL CHAR

UP Packed decimal data

where the sign nibble

is ignored. The value

is always positive.

DECIMAL N/A

UF2 Unsigned 32 bit

binary value.

INTEGER N/A

UH3 Unsigned 16 bit

binary value.

SMALLINT N/A

1The SQL data type is identified as FLOAT, and the column length is either 4 or 8, based on

the column precision. In the USE AS clause, these floating point data types can be identified

as FLOAT(precision), REAL, or DOUBLE PRECISION. REAL is shorthand for a 4 byte

floating point number. DOUBLE PRECISION is shorthand for an 8-byte floating point

number. For FLOAT, the maximum precision is specified. If the value is in the range 1 21,

the column represents a 4 byte floating point number. For precisions in the range 22 53, the

column represents an 8 byte floating point number. The GUI does not need to specify a

native data type for floating point columns because the data type is defaulted based on the

USE AS clause.

2Specifying a DATATYPE of UF or UH has no effect on the contents or formatting of the

underlying value that is stored in the database. Because the SQL INTEGER and SMALLINT

data types are always signed the underlying binary value is always treated as a signed

value. The UF and UH DATATYPE values are included in the list to be consistent with the

UC and UP data types.

3Specifying a DATATYPE of UF or UH has no effect on the contents or formatting of the

underlying value that is stored in the database. Because the SQL INTEGER and SMALLINT

data types are always signed the underlying binary value is always treated as a signed

value. The UF and UH DATATYPE values are included in the list to be consistent with the

UC and UP data types.

Chapter 3. VSAM 51

Some database-specific data types are supported that are not shown in the

above table.

 If DATATYPE information is not specified, the native data type is synthesized

based on the column of the SQL data type or from the database system.

 The SQL data type information in the USE AS clause identifies the value in the

SIGNED column in the following instances:

v One character code is supplied

v No DATATYPE information is specified

v Native data type information is not obtained from the database system

USE AS

Identifies the SQL data type for the column.

 The following table describes the data types for columns. The non-null

SQLTYPE identifies the data type in internal control blocks and diagnostic

trace information.

 Table 7. SQL data type descriptions

Keyword identifier Description Maximum length SQLTYPE

CHAR(length) Fixed-length character

string that contains

mixed mode data.

255 452

VARCHAR(length) Variable length

character string that

contains mixed mode

data. A half-word

length component

precedes the

character string and

identifies the actual

length of the data.

The length field does

not include the length

of the length field.

32704 448

LONG VARCHAR Long character string

that contains mixed

mode data. A

half-word length

component precedes

the character string

and identifies the

actual length of the

data. The length field

does not include the

length of the length

field.

32704 456

GRAPHIC(length) Fixed-length graphic

string that is assumed

to contain pure DBCS

data without shift

codes. The length is

expressed in DBCS

characters, and not

bytes.

127 468

52 SQL Reference for Classic Federation and Classic Data Event Publishing

Table 7. SQL data type descriptions (continued)

Keyword identifier Description Maximum length SQLTYPE

VARGRAPHIC(length) Varying-length

graphic string that is

assumed to contain

pure DBCS data

without shift codes. A

half-word length

component precedes

the graphic string

and identifies the

actual length of the

data. The length is

expressed in DBCS

characters, and not

bytes.

16352 464

LONG

VARGRAPHIC

Long graphic string

that is assumed to

contain pure DBCS

data without shift

codes. A half-word

length component

precedes the graphic

string and identifies

the actual length of

the data. The length

is expressed in DBCS

characters, and not

bytes.

16352 472

INTEGER Large integer. Exactly 4 496

SMALLINT Small integer. Exactly 2 500

DECIMAL

(precision,scale) or

DECIMAL(precision)

Packed decimal data.

A valid precision

value is between 1

and 31. A valid scale

value is between zero

and the precision

value.

31 484

Chapter 3. VSAM 53

Table 7. SQL data type descriptions (continued)

Keyword identifier Description Maximum length SQLTYPE

FLOAT(precision) Floating point

number. Depending

upon the precision, a

column with a

FLOAT data type

takes on the

attributes of a REAL

or DOUBLE

PRECISION data

type. When precision

is in the range of 1 to

21, the column is

treated as a REAL.

For precisions

between 22 and 53,

the column takes on

DOUBLE PRECISION

attributes. A precision

of zero or greater

than 53 is nonvalid.

4 or 8 480

REAL Floating point

number with a range

of magnitude of

approximately 5.4E 79

to 7.2E+75.

4 480

DOUBLE PRECISION Floating pointer with

a range of magnitude

of approximately 5.4E

79 to 7.2E+75.

8 480

When you use a USE AS LONG VARCHAR or USE AS LONG VARGRAPHIC

clause, you do not specify a length for the column. The length is based on the

physical attributes that are obtained about the object record or segment where

the column is. When you use a USE AS VARCHAR clause with a length

greater than 254, that column is changed into a LONG VARCHAR column. The

length in the clause is discarded. The maximum physical length is computed

based on physical attributes. The same behavior occurs for a USE AS

VARGRAPHIC clause when the length is greater than 127.

USE RECORD LENGTH

 The USE RECORD LENGTH clause is specified after the USE AS clause for a

VARCHAR, LONG VARCHAR, VARGRAPHIC or LONG VARGRAPHIC data

type specification.

 Indicates the varying string or graphic column contains the entire contents of

the record that the column is associated with. The entire record content

contains character data. The actual data contents were not important to any

client application that accessed one of these columns that ran on an MVS

system where no code page conversion was performed.

WITHOUT CONVERSION

Specifies that a field procedure does not exist for the column.

WITH CONVERSION

Identifies the name of the load module for a field procedure, if a field

procedure is required. The field procedure name is a short identifier.

54 SQL Reference for Classic Federation and Classic Data Event Publishing

NULL IS null_value

Specifies a value that identifies when the contents of the column is null. By

default, the data in a column never contains a null value. This situation is true

even for variable length character or graphic columns where the length

component indicates that there is no data in the variable length column.

 A null value is a character string that can specify up to 16 characters of data.

Specifies the value in hexadecimal format. The total length of the string is 35

characters.

 A column contains null values based on null-value. If the start of the column

data matches the null value, then that instance of the column is null. For

example, if a column is defined as CHAR(10) and a null value of x’4040’ is

specified, the null value length is 2. If the first 2 bytes of the column contain

spaces, the column is also null.

PRIMARY KEY

Identifies the column to be one of the columns that constitute the primary key

for the table. This form of primary key identification is mutually exclusive with

specifying a primary key at the end of the CREATE TABLE statement.

 You can identify a primary key at the column level when the columns that

make up the primary key for the table are defined in ordinal sequence within

the table definition.

 KSDS or files that are accessed through an alternate index of columns that map

to the key offset and length information, which are determined during

validation, are good candidate columns to identify as primary keys. VSAM

ESDS or RRDS files that are not accessed through an alternate index are always

poor candidates for primary keys.

You can use the PRIMARY KEY clause on the column definition to identify the

primary key columns when the keys are defined in the same order.

Record arrays for VSAM

Record arrays identify and handle data that can repeat multiple times within a

non-DB2 database or file system.

Syntax

�� BEGINLEVEL level-number OFFSET relative-offset LENGTH occurrence-length �

� OCCURS number-of-occurances

MAXOCCURS

maximum-occurances

DEPENDING ON COLUMN

column-name

MAXOCCURS

maximum-occurances

NULL IS

null-value

column-name

EQUAL

,

 �

�
ENDLEVEL

level-number
 ��

Parameters

BEGINLEVEL level-number

 Identifies the start of a record array.

 The level-number on a BEGINLEVEL or ENDLEVEL definition identifies the

nesting level of the record array within the parent fragment. Multiple record

arrays can exist with the same level-number. However, these situations within a

Chapter 3. VSAM 55

single table represent a questionable mapping. Ideally you should create

separate tables for each record array that exists at the same level. The reason is

that when accessing these kinds of tables, for a single database access, the

query processor can generate the Cartesian product for the maximum

occurrences of all record arrays that are defined.

 The following example shows a multiple record array. In this example, the

EMPL-ADDRESS data item occurs three times and the EMPL-DEPENDENTS,

EMPL-DEP-NAME and EMPL-DEP-DOB data items occur ten times. By default

the query processor generates 30 rows for each EMPL-RECORD read.

 If the information in the above example needs to be accessed in a single table

definition, then two record array definitions are required. These record arrays

are both level number 1 arrays because the employee address information

exists first and repeats three times followed by the employee dependent

information that occurs ten times.

OFFSET relative-offset

The relative offset identifies the relative starting position of the record array

within its owning fragment definition. The owning fragment definition is

either associated with the table or with a parent record array definition.

LENGTH occurrence-length

 Iidentifies the length in bytes of one occurrence of the repeating data.

MAXOCCURS maximum-occurrences DEPENDING ON COLUMN column-name

 Identifies a record array that occurs a variable number of times. The number of

actual instances that exist in a particular database record is identified by the

contents of a column definition that exists before the record array definition.

 The following example uses an OCCURS DEPENDING ON COLUMN clause

that defines a variably occurring record array. In this example, the

EMPL-DEP-COUNT data item identifies the number of dependents that exist

in the EMPL-DEPENDENTS record array.

01 EMPL-RECORD

 05 EMPL-SSN PIC 9(9)

 05 EMPL_NAME

 10 EMPL-LAST PIC X(30)

 10 EMPL_FIRST PIC X(30)

 10 EMPL_MI PIC X

 05 EMPL-ADDRESS PIC X(30) OCCURS 3 TIMES

 05 EMPL-DEPENDENTS OCCURS 10 TIMES

 10 EMPL-DEP-NAME PIC X(30)

 10 EMPL-DEP-DOB PIC 9(8)

Figure 8. Example of a multiple record array

56 SQL Reference for Classic Federation and Classic Data Event Publishing

You cannot map columns that occur after a variable length array, because the

starting offsets of data items that are defined after an OCCURS DEPENDING

ON definition are not at a fixed offset. The starting offsets float from one

record instance to the next, based on the actual number of occurrences that are

identified by the contents of the DEPENDING ON data item. The Classic

federation servers do not currently support calculated field offsets, and you

cannot access these fields.

 The maximum-occurrences value must be a numeric value, and column-name

must specify the name of a column in the table. The control column must

contain a numeric value. The query process supports SQL types of SMALLINT,

INTEGER, DECIMAL, or CHAR (if the column contains zoned decimal data).

MAXOCCURS maximum-occurrences NULL IS

 Defines a record array that repeats a fixed number of times. You specify a

value that denotes a null value. When a column in the record array contains

the specified value, the content of the column is interpreted as null.

 The maximum-occurrences value must be numeric. The null-value is a character

string of up to 32 characters. The null-value can also be a 67-character

hexadecimal string that consists of 64 hexadecimal nibbles, the leading x, and

the surrounding quotation marks.

 The minimal definition for this kind of array structure has the NULL IS

keyword followed by the null-value string. With this syntax, a record array

element contains null values based on the length of the null-value string. If the

start of the column data matches the null-value then that instance of the

repeating group of columns or record arrays is null. For example, a null-value

of x’4040’ is specified; the null value length is 2 and if the first two bytes of a

record entry match the null value the entry is null. Processing of the array

contents is skipped and the next element in the record array is inspected.

 Elements or the array are processed like this:

1. The first element in the record array is located based on the relative-offset

information.

The physical location is computed based on the parent fragment offset

information.

2. The second through nth instances starting locations are determined by

incrementing the physical location by the occurrence length value.

Alternatively, you can check the entire contents of a record array to determine

if it contains a null value by using the ALL keyword. For example, the syntax

is NULL IS ALL null-value. With this form, only a single character of null

value data can be supplied in either character or hexadecimal format.

01 EMPL-RECORD

 05 EMPL-SSN PIC 9(9)

 05 EMPL_NAME

 10 EMPL-LAST PIC X(30)

 10 EMPL_FIRST PIC X(30)

 10 EMPL_MI PIC X

 05 EMPL-ADDRESS PIC X(30) OCCURS 3 TIMES

 05 EMPL-DEP-COUNT PIC S9(4) COMP

 05 EMPL-DEPENDENTS OCCURS 10 TIMES

 DEPENDING ON EMPL-DEP-COUNT

 10 EMPL-DEP-NAME PIC X(30)

 10 EMPL-DEP-DOB PIC 9(8)

Figure 9. Example of an OCCURS DEPENDING ON defintion

Chapter 3. VSAM 57

When you add column-name EQUAL to the NULL IS clause, the null checking

for a record array element is confined to the contents of a single column.

Ideally, the column needs to exist within the record array. However, that

column is not a requirement.

 When column-level null checking is requested, the same kinds of options are

available as with entry-level checking. The same kinds of errors can be

generated. If the ALL keyword is not specified, then the contents of the column

in each record array entry is checked to see if it matches the supplied value. If

so, the entry is null and its contents are ignored. Likewise if the ALL keyword

is supplied, only a single character null value can be specified. The entire

contents of the column are checked to see if a record array instance is null and

therefore ignored.

ENDLEVEL level-number

Identifies the end of the definition.

CREATE INDEX statement for VSAM

You can use the CREATE INDEX statement to define an index that references the

columns that make up a VSAM KSDS primary key or the columns that map to an

alternate index PATH definition.

Indexes identify columns in a table that correspond to a physical index that is in

the source database. The query processor uses the contents of the columns that are

referenced in a WHERE clause to create the index. The query processor attempts to

build either a full key value to use in database access or a partial key value. The

partial key can be used to perform a range scan against the target database to

reduce the number of records that are accessed.

Although you might not be able to define an index against columns that

correspond to the primary key, you can identify these columns as primary key

columns. This primary key information does not affect existing connector index

selection and access optimization. The primary key information is made available

for use by front-end tools and for replication purposes, where key information is

either required or beneficial.

Syntax

�� CREATE INDEX index-name

UNIQUE
 ON table-name �

�

�

 ,

ASC

(

column-name

)

;

DESC

data-set-information

��

data-set-information::

DD

DD-name

DS

dataset-name

58 SQL Reference for Classic Federation and Classic Data Event Publishing

Parameters

CREATE INDEX index-name

 Identifies the SQL statement as an index definition statement. A unique index

does not have any restrictions about the columns that make up the index. For

example, a unique index column can contain null values.

 If qualified, the index name is a two-part name, and the authorization ID that

qualifies the name is the owner of the index. If an unqualified table name is

supplied, the owner name is the authorization ID from the CURRENT SQLID

special register.

ON table-name

 Identifies the table for which the index is being defined. The table name can be

a qualified or unqualified table name. For unqualified names, the table owner

is from the CURRENT SQLID special register.

 The table name is validated with the standard syntax checks that are associated

with identifiers, and then the existence of the table is verified. Do not define an

index on a view.

column-name ASC/DESC

 Specifies column names that make up the index key. Optionally, you can

identify whether the column is stored or accessed in ascending (ASC) or

descending (DESC) key sequence. By default, the key is in ascending key

sequence.

 There are no fixed limits on the number of columns that you can identify as

key columns for an index. The only requirements are as follows:

v The column must exist in the table.

v The column must map to what constitutes a key in the target database. In

most cases, this determination is based on the starting offset and length of

the column as compared to the starting offset and length of the key in the

target database.

v The column cannot overlap another column within the key definition. This

determination is based on the starting offset and length of a column as

compared to the starting offsets and length of the other columns that are

identified as key columns for the index definition.

v For the key column, generally varying length and graphic data types are not

supported.

Key column verification is strict and enforces all rules for column names. Rule

4 enforcement (nonvalid data types) is enforced. Identification of any kind of

varying-length character or graphic string is not allowed.

Data-set-information

Identifies the data set that accesses the columns that make up the table that

table_name references. One common reason to create an index is when a VSAM

KSDS file has an alternate index that is associated with it. The most likely

scenario is that the table references the base cluster name, and some queries do

not contain references in the WHERE clause to the VSAM primary key. But, the

queries do contain columns in the WHERE clause that map to the key of the

alternate index. For these queries, use the alternate index.

 To define an alternate index, use either the DD clause or DS clause to identify

the name of the alternate index path data set. Also, identify as the key columns

those columns that map to the alternate index key. When a query that contains

a WHERE clause references these key columns, automatic index selection

Chapter 3. VSAM 59

determines that the index is the best candidate for processing the query. Thus,

the alternate index path accesses the actual VSAM data.

 You can also define indexes to publish information to tools. For example, if

you have a single column that maps the entire social security number and the

three-column mapping for the components, you can define two index

definitions. In the first index definition, identify the single column as the key

column. In the second index definition, identify the three-component columns

as the keys. In this example, identification of DD or DS information is not

allowed. The DD or DS clauses only identify an alternate index path data set.

 DD DD-name

 Specifies the VSAM file that the table maps to. Specifies either a local file

reference or a reference to a CICS file definition table (FDT) entry name.

 If DD-name represents a local file reference, a DD clause that references the

VSAM file must exist in the Classic federation data server JCL.

 If DD-name references an FDT entry name, you must specify CICS

connection information with the CICS_connection_information clause.

 DD-name must correspond to a cluster or alternate index path definition for

a VSAM ESDS, KSDS or RRDS data set.

 DD-name is a short native identifier that conforms to the naming

conventions for a z/OS JCL DD statement.

DS data-set-name

 Specifies the VSAM file that the table definition accesses. Designates a

VSAM cluster definition or a PATH component when the VSAM file is

accessed from a VSAM alternate index.

 The data set name must correspond to a cluster or alternate index path

definition for a VSAM ESDS, KSDS or RRDS data set.

 The name can be 1 to 44 characters in length and follows z/OS naming

conventions for VSAM data sets.

Example

The following is an example of a CREATE INDEX statement for VSAM.

CREATE UNIQUE INDEX "DBA"."EMPLOYEE_EP_IDX1" ON "DBA"."EMPLOYEE_EP" ("EMPL_SSN" ASC);

ALTER TABLE statement for VSAM

You can use the ALTER TABLE statement to alter the definition of a table.

Authorization

You must have the one of the following authorities to run the ALTER TABLE

statement:

v SYSADM

v DBADM for the database type that is referenced in the DBNAME column for the

table being altered

v Ownership of the table being altered

60 SQL Reference for Classic Federation and Classic Data Event Publishing

Syntax

�� ALTER TABLE table-name DATA CAPTURE CHANGES ;

NONE
 ��

Parameters

table-name

Identifies the table for which the DATA CAPTURE flag is being altered. The

table name can be a qualified or unqualified table name. If an unqualified

name is supplied, the table owner is from the CURRENT SQLID special

register.

DATA CAPTURE

 Indicates that the ALTER TABLE statement is setting the value of the DATA

CAPTURE flag.

CHANGES

Allows a change-capture agent to capture changes to the non-relational

data that the table is mapped to.

 The following restrictions apply:

v Change capture is not allowed if the table references an alternate index.

v Change capture with an NVA change-capture agent is allowed only if

the table is defined with a data set name, rather than with a DD name.

NONE

Disallows change-capture agents to capture changes to the non-relational

data that the table is mapped to.

Example

The following is an example of an ALTER TABLE statement for VSAM.

ALTER TABLE "DBA"."EMPLOYEE_EP" DATA CAPTURE CHANGES;

Chapter 3. VSAM 61

62 SQL Reference for Classic Federation and Classic Data Event Publishing

Chapter 4. SQL security

Security of your data is particularly important in an SQL-based DBMS, because

interactive SQL makes database access very easy. The security requirements of

production databases can include data in any given table that is accessible to some

users, but denied to others, and allow some users to update data in a table, while

others can only view data.

Overview of SQL security

SQL security in federation, event publishing, and replication is similar to security

in DB2 databases.

Implementing security and enforcing security restrictions are the responsibility of

the DBMS software. SQL defines an overall framework for database security, and

SQL statements specify security access and restrictions.

SQL security involves the following key concepts:

v Users are the actors in the database. When the DBMS retrieves, inserts, deletes,

or updates data, it does so on behalf of a user or group of users. The DBMS

permits or denies user actions depending on which user makes the request. You

can define users and user groups based on categories of administrative

authorities.

v Database objects, such as tables, views, and stored procedures are the objects to

which SQL security can be applied.

v Privileges are the actions that a user is permitted to perform against a particular

database object. For example, a user might have permission to select and insert

rows in one table, but lack permission to delete or update rows in that table.

These privileges are allowed or prohibited by using the GRANT and REVOKE

SQL statements.

v SQL security and the SAF exit work together to ensure that the user ID and its

password are checked before allowing access to particular database objects.

v SQL security is required for federation, event publishing, and replication.
 Related concepts

Security: SAF exit
Use the SAF exit to verify that a user has authority to access a physical file or

PSB referenced in an SQL query. The SAF exit also verifies that a user has

authority to execute a stored procedure program.

Authorization

In federation, event publishing, and replication, each user ID is associated with a

particular authority level.

You can assign users to the following authority levels:

SYSADM

The system administrator has privileges for all objects and has the ability

to grant authority to other users. The first user to run the metadata utility

is granted SYSADM authority.

© Copyright IBM Corp. 2007 63

http://publib.boulder.ibm.com/infocenter/iisclzos/v9r1/topic/com.ibm.websphere.ii.federation.classic.exits.doc/administering/iiyfcsyxexitspec.dita

SYSOPR

The system operator has remote-operator privileges to display and manage

an active data server.

DISPLAY

This user or user group has remote-operator privileges for display

commands on an active data server.

DBADM

The database administrator has mapping and view-creation privileges for

specific database types.

PUBLIC

This user or user group is limited to privileges that are explicitly granted

to its user name or PUBLIC.

You assign privileges to individual users or groups of users based on an

authorization ID by using the SQL GRANT statement. The authorization ID

determines whether the statement is permitted or prohibited by the DBMS. In

production databases, the database administrator assigns authorization IDs.

Authorization requirements for SQL statements

To issue GRANT, REVOKE, SELECT, EXECUTE, INSERT, UPDATE, and DELETE

statements, you must have specific authorization.

The following table describes authority levels that are required to issue each of

these statements.

 Table 8. Authorization requirements for SQL statements

Statement Authority required

{GRANT | REVOKE} To grant a privilege, you must have SYSADM

authority, or you must be granted the privilege

itself with the WITH GRANT option.

To revoke a privilege, you must have SYSADM

authority or be the user who originally granted

the privilege being revoked. The BY ALL clause

requires SYSADM authority because you are

revoking revoke privileges that are granted by

users other than yourself.

SELECT SYSADM authority or the specific privilege is

required. SELECT authority on all tables and

views is referenced in the SELECT statement.

EXECUTE SYSADM authority or the specific privilege is

required. EXECUTE authority is on the

procedure.

INSERT SYSADM authority or the specific privilege is

required. INSERT authority is on the table.

UPDATE SYSADM authority or the specific privilege is

required. UPDATE authority is on the table and

SELECT authority on all tables is referenced in

the WHERE clause.

DELETE SYSADM authority or the specific privilege is

required. DELETE authority is on the table.

SELECT authority is on all tables that are

referenced in the WHERE clause.

64 SQL Reference for Classic Federation and Classic Data Event Publishing

Related reference

Verifying SMF exit output
DSECT fields map the output data from the SMF exit accounting routine.

Understanding the field definitions enables you to verify this output data.

Database objects in SQL security

Catalog database types are database objects to which security can be applied.

To manage or secure the metadata utility for mapping purposes, the following

implicit database names are associated with metadata catalogs:

$ADABAS

For Adabas database mappings

$CFI For system catalog

$DATACOM

For CA-Datacom database mappings

$IDMS

For CA-IDMS database mappings

$IMS For IMS database mappings

$SEQUENT

For sequential database mappings

$SP For stored procedure definitions

$VSAM

For VSAM database mappings

These metadata catalogs map one-to-one with the connectors, with the exception of

$CFI.

You can specify database types in the GRANT DBADM statement. For example:

GRANT DBADM ON DATABASE $IMS TO USER1

To map tables, you must have the SYSADM authority to run the metadata utility,

because the metadata utility does not have security-access checking at the database

level. Grant DBADM authority only for DROP commands.

 Related concepts

Metadata catalog
The information that you generate from the Classic Data Architect is stored in

metadata catalogs.

Defining user privileges

Privileges are the set of actions that a user can perform. The SQL GRANT and

REVOKE statements assign privileges.

You can use the Classic Data Architect to grant and revoke one or more of the

following privileges:

v System

v Database

Chapter 4. SQL security 65

http://publib.boulder.ibm.com/infocenter/iisclzos/v9r1/topic/com.ibm.websphere.ii.federation.classic.exits.doc/administering/iiyfcsyxsmfdsect.dita

v Stored procedures

v Tables and views

The GRANT and REVOKE are executable statements that can be dynamically

prepared.

A specific grantor can grant or revoke specific privileges to specific users, with the

restriction that a privilege can only be revoked if it has first been granted.

 Related concepts

Stored procedures
A stored procedure is an application program that performs work that SQL

SELECT, INSERT, UPDATE, and DELETE operations cannot perform. A client

application invokes a stored procedure application by issuing an SQL CALL

statement.

 Security: SAF exit
Use the SAF exit to verify that a user has authority to access a physical file or

PSB referenced in an SQL query. The SAF exit also verifies that a user has

authority to execute a stored procedure program.

System privileges

System privileges allow or deny access to a specific set of catalogs within a data

server.

Syntax:

��

�

 ,

GRANT

DISPLAY

TO

authorization-name

REVOKE

SYSOPR

FROM

PUBLIC

(1)

SYSADM

WITH GRANT OPTION

�

�

�

(2)

BY

ALL

,

authorization-name

 ��

Notes:

1 GRANT only

2 REVOKE only. Only revokes privileges granted by that user

The following table describes the statement parameters.

 Table 9. Parameter descriptions for the GRANT and REVOKE statement.

Parameter Description

{GRANT | REVOKE} GRANT or REVOKE privileges to user IDs or

groups of user IDs.

DISPLAY GRANT or REVOKE the privileges to

remotely issue all forms of the DISPLAY

command to a data server.

66 SQL Reference for Classic Federation and Classic Data Event Publishing

http://publib.boulder.ibm.com/infocenter/iisclzos/v9r1/topic/com.ibm.websphere.ii.federation.classic.transcommon.doc/administering/iiyfctppovrvw.dita

Table 9. Parameter descriptions for the GRANT and REVOKE statement. (continued)

Parameter Description

SYSOPR GRANT or REVOKE the privilege to

remotely issue all commands to a data server

including the commands to start and stop

services and shut down the data server.

Commands issued from the system console

are not secured.

SYSADM GRANT or REVOKE system administrator

authority.

{TO | FROM} {authorization-name | PUBLIC} GRANT or REVOKE authority to a particular

user or group of users, or to all users or

groups of users on a system.

WITH GRANT OPTION GRANT authority to a particular user or

group of users to GRANT authority to other

users or other groups of users in the system.

Although this option can be specified when

granting the SYSADM privilege, it has no

effect on SYSADM privileges because

SYSADM has ALL access privileges available

in the data server.

BY ALL authorization-name BY revokes each named privilege that was

explicitly granted to some named user or

group of users by one of the named grantors.

Only an authorization ID with SYSADM

authority can use BY, even if the

authorization ID names only itself in the BY

clause.

ALL then revokes each named privilege from

all named users or group of users.

authorization-name lists one or more

authorization IDs of users or group of users

who were the grantors of the privileges

named.

Do not use the same authorization ID more

than once. Each grantor listed must have

explicitly granted some named privilege to

all named users or group of users.

Database privileges

Authorization IDs with DBADM privileges can grant and revoke specific privileges

within a particular database.

Syntax:

��

�

 ,

GRANT

DBADM

ON DATABASE

database-name

REVOKE

�

Chapter 4. SQL security 67

�

�

 ,

(1)

TO

authorization-name

WITH GRANT OPTION

FROM

PUBLIC

��

Notes:

1 GRANT only

The following table describes the statement parameters.

 Table 10. Parameter descriptions for the GRANT and REVOKE statement.

Parameter Description

GRANT ON DATABASE database-name Identifies database types on which privileges

are to be granted. For each named database

type the grantor must have all the specified

privileges with the GRANT option. This

privilege secures the mappings of tables and

dropping of mapped tables. The types are as

follows:

$ADABAS

For Adabas mappings

$CFI For metadata catalog mappings

$DATACOM

For CA-Datacom mappings

$IDMS For CA-IDMS mappings

$IMS For IMS mappings

$SEQUENT

For sequential

$SP for stored procedures

$VSAM

For VSAM

REVOKE ON DATABASE database-name Identifies the database type on which you

revoke the privileges. For each database type,

you or the indicated grantors must have

granted at least one of the specified

privileges on that database to all identified

users (including PUBLIC, if specified). The

same database type must not be identified

more than once. The database-names are the

same as those listed for the GRANT ON

DATABASE database-name option.

{TO | FROM} {authorization-name | PUBLIC} Specifies to what authorization IDs the

privileges are granted or revoked. The

authorization-name variable lists one or more

authorization IDs.

WITH GRANT OPTION Allows the named users to grant the

database privileges to others. The user can

specifically grant any privilege belonging to

that authority. If you omit WITH GRANT

OPTION, the named users cannot grant the

privileges to others unless they have that

authority from some other source.

68 SQL Reference for Classic Federation and Classic Data Event Publishing

Stored procedure privileges

Stored procedure privileges allow or deny access to a particular stored procedure.

Syntax:

��

�

 ,

GRANT

EXECUTE

ON PROCEDURE

procedure-name

REVOKE

�

�

�

 ,

(1)

TO

authorization-name

WITH GRANT OPTION

FROM

PUBLIC

�

�

�

(2)

BY

ALL

,

authorization-name

 ��

Notes:

1 GRANT only

2 REVOKE only. Only revokes privileges granted by that user

The following table describes the statement parameters.

 Table 11. Parameter descriptions for the GRANT and REVOKE statement.

Parameter Description

{GRANT | REVOKE} Grants or revokes authority to run a stored

procedure.

ON PROCEDURE procedure-name Identifies the procedure for which you grant

or revoke privileges.

{TO | FROM} {authorization-name | PUBLIC} Specifies to or from which authorization IDs

the privileges are granted or revoked. The

authorization-name variable lists one or more

authorization IDs.

WITH GRANT OPTION Allows the named users to grant the stored

procedure privileges to others. The user can

specifically grant any privilege belonging to

that authority. If you omit WITH GRANT

OPTION, the named users cannot grant the

privileges to others unless they have that

authority from some other source.

Chapter 4. SQL security 69

Table 11. Parameter descriptions for the GRANT and REVOKE statement. (continued)

Parameter Description

BY ALL authorization-name BY revokes each named privilege that was

explicitly granted to some named user or

group of users by one of the named grantors.

Only an authorization ID with SYSADM

authority can use BY, even if the

authorization ID names only itself in the BY

clause.

ALL then revokes each named privilege from

all named users or group of users.

authorization-name lists one or more

authorization IDs of users or group of users

who were the grantors of the privileges

named.

Do not use the same authorization ID more

than once. Each grantor listed must have

explicitly granted some named privilege to

all named users or group of users.

Table and view privileges

Table and view privileges allow or deny access to specific tables and views.

GRANT syntax for tables and views

��

�

�

 ,

PRIVILEGES

TABLE

GRANT

ALL

ON

table-name

,

view-name

DELETE

INSERT

SELECT

UPDATE

�

�

�

 ,

TO

authorization-name

WITH GRANT OPTION

PUBLIC

��

 Table 12. Parameter descriptions for the GRANT statement.

Parameter Description

GRANT {ALL | ...} PRIVILEGES Grants all table or view privileges for which

you have GRANT authority, for the tables

and views named in the ON clause.

DELETE Grants privileges to use the DELETE

statement.

INSERT Grants privileges to use the INSERT

statement.

SELECT Grants privileges to use the SELECT

statement.

70 SQL Reference for Classic Federation and Classic Data Event Publishing

Table 12. Parameter descriptions for the GRANT statement. (continued)

Parameter Description

UPDATE Grants privileges to use the UPDATE

statement.

ON TABLE {table-name | view-name} Names the tables or views on which you are

granting the privileges. The list can be a list

of table names or view names, or a

combination of the two.

{TO | FROM} {authorization-name | PUBLIC} Specifies to or from which authorization IDs

the privileges are granted or revoked.

authorization-name lists one or more

authorization IDs.

WITH GRANT OPTION Allows the named users to grant the

table/view privileges to others. Granting an

administrative authority with this option

allows the user to specifically grant any

privilege belonging to that authority. If you

omit WITH GRANT OPTION, the named

users cannot grant the privileges to others

unless they have that authority from some

other source.

REVOKE syntax for tables and views

��

�

�

 ,

PRIVILEGES

TABLE

REVOKE

ALL

ON

table-name

,

view-name

DELETE

INSERT

SELECT

UPDATE

�

�

�

�

 ,

FROM

authorization-name

PUBLIC

,

BY

authorization-name

ALL

��

 Table 13. Parameter descriptions for the REVOKE statement.

Statement Description

REVOKE {ALL | ...} PRIVILEGES Revokes all table or view privileges for

which you have GRANT authority, for the

tables and views named in the ON clause.

DELETE Revokes privileges to use the DELETE

statement.

INSERT Revokes privileges to use the INSERT

statement.

SELECT Revokes privileges to use the SELECT

statement.

Chapter 4. SQL security 71

Table 13. Parameter descriptions for the REVOKE statement. (continued)

Statement Description

UPDATE Revokes privileges to use the UPDATE

statement.

ON TABLE {table-name | view-name} Names the tables or views on which you are

granting the privileges. The list can be a list

of table names or view names, or a

combination of the two.

FROM {authorization-name | PUBLIC} Specifies to what authorization IDs the

privileges are revoked. authorization-name lists

one or more authorization IDs.

BY {ALL | authorization-name} BY revokes each named privilege that was

explicitly granted to some named user or

group of users by one of the named grantors.

Only an authorization ID with SYSADM

authority can use BY, even if the

authorization ID names only itself in the BY

clause.

ALL then revokes each named privilege from

all named users or group of users.

authorization-name lists one or more

authorization IDs of users or group of users

who were the grantors of the privileges

named.

Do not use the same authorization ID more

than once. Each grantor listed must have

explicitly granted some named privilege to

all named users or group of users.

SAF and SMF system exits for SQL security

In addition to authorizations and privileges for SQL security, you need to use the

System Authorization Facility (SAF) security exit. The SAF exit is required to

validate passwords for data server connections.

With the SAF exit, you can administer SQL security at a group level. The group

name, in addition to the user ID, determines whether users are authorized to

perform the operation they attempt. A group name makes security administration

easier because you only need to grant and revoke privileges to and from the group

name for all users that are associated with that group name. When you need to

authorize access to new users, you can use your external security package and

assign the new user to the default group name.

In addition, the query processor calls the System Management Facility (SMF) exit

when an authorization violation is detected. The SMF exit generates an SMF record

that logs the user ID, type of authorization failure, and the name of the object for

which authorization failed.

 Related concepts

Security: SAF exit
Use the SAF exit to verify that a user has authority to access a physical file or

PSB referenced in an SQL query. The SAF exit also verifies that a user has

authority to execute a stored procedure program.

72 SQL Reference for Classic Federation and Classic Data Event Publishing

http://publib.boulder.ibm.com/infocenter/iisclzos/v9r1/topic/com.ibm.websphere.ii.federation.classic.exits.doc/administering/iiyfcsyxexitspec.dita

Accounting: SMF exit
The SMF exit is used to report wall-clock time and CPU time for an individual

user session with a query processor task. Additionally, if SQL security is active

and an authorization violation is detected by the query processor, the exit is

called to log the violation.
 Related reference

Verifying SMF exit output
DSECT fields map the output data from the SMF exit accounting routine.

Understanding the field definitions enables you to verify this output data.

Chapter 4. SQL security 73

http://publib.boulder.ibm.com/infocenter/iisclzos/v9r1/topic/com.ibm.websphere.ii.federation.classic.exits.doc/administering/iiyfcsyxsmfxspec.dita
http://publib.boulder.ibm.com/infocenter/iisclzos/v9r1/topic/com.ibm.websphere.ii.federation.classic.exits.doc/administering/iiyfcsyxsmfdsect.dita

74 SQL Reference for Classic Federation and Classic Data Event Publishing

Chapter 5. Views

In Classic federation and change capture, views can provide alternative ways to

work with the data.

Database tables define the structure and organization of the data it contains. Using

SQL, you can look at the stored data in other ways by defining alternative views of

the data. A view is an SQL query that is stored in the database and assigned a

name, similar to a table name. The results of the stored query are then visible

through the view. With SQL, you can access these query results as if the results

were a real table in the database. You can also use views as sources for

publications and subscriptions.

In Classic federation, views allow you to manage your data in these ways:

v Tailor the appearance of a database so that different users see it from different

perspectives.

v Restrict access to data, allowing different users to see only certain rows or

certain columns of a table.

v Simplify database access by presenting the structure of the stored data in the

way that is most natural for each user.

In change capture, views allow you to manage your data in these ways:

v Tailor change capture from a database for different purposes.

v Capture changes from source data with multiple record layouts.
 Related concepts

Classic Data Architect
The Classic Data Architect is the redesigned administrative tool introduced in

Version 9 that replaces the Classic Data Mapper.

Record types and COBOL example

Many COBOL record layouts contain layout information to map different record

types within a single physical file. Whenever record types are defined in a

copybook, create a separate table for each value. The record type field can contain

and map only the COBOL fields that are associated with a specified value.

As a simple example, a single VSAM file stores both employee and address

records. The correct record interpretation is managed by comparing a record type

field in the COBOL record layout to a set of known values. The following COBOL

definition shows how this comparison is done by using a REDEFINES clause:

01 EMPLOYEE-ADDRESS-RECORD.

05 RECORD-TYPE PIC X.

 88 RECORD-IS-EMPLOYEE VALUE ‘E’.

 88 RECORD-IS-ADDRESS VALUE ‘A’.

05 EMPLOYEE-INFORMATION.

 10 LAST-NAME PIC X(20).

 10 FIRST-NAME PIC X(20).

 10 DATE-OF-BIRTH PIC 9(8).

 10 MONTHLY-SALARY PIC S9(5)V99 COMP-3.

 10 FILLER PIC X(48).

05 ADDRESS-INFORMATION REDEFINES EMPLOYEE-INFORMATION.

 10 ADDRESS-LINE-1 PIC X(30).

© Copyright IBM Corp. 2007 75

http://publib.boulder.ibm.com/infocenter/iisclzos/v9r1/topic/com.ibm.websphere.ii.federation.classic.overview.doc/prod_overview/iiyfcstocda.dita

10 ADDRESS-LINE-2 PIC X(30).

 10 ADDRESS-CITY PIC X(20).

 10 ADDRESS-STATE PIC XX.

 10 ADDRESS-ZIP PIC 9(5).

A COBOL REDEFINES clause redefines data in the identical record locations of a

record layout. In this case, EMPLOYEE-INFORMATION and ADDRESS-
INFORMATION both start at location 2 in the record. To accurately map the

COBOL record above, two distinct SQL mappings are necessary for the file. The

first mapping consists of columns for RECORD-TYPE, LAST-NAME, FIRST-NAME,

DATE-OF-BIRTH, and MONTHLY-SALARY. The second mapping consists of

RECORD-TYPE, ADDRESS-LINE-1, ADDRESS-LINE-2, ADDRESS-CITY,

ADDRESS-STATE, and ADDRESS-ZIP. Each of these mappings is used to create a

separate table definition in the metadata catalog.

By default, in response to an SQL query or data change, every record in the file

matches the defined table. If the underlying data does not match the definition,

errors in processing occur or nonvalid information is returned. In the case

described above, an address record retrieved by using the employee table

definition produces a data error because the MONTHLY-SALARY field contains

character address data instead of numeric salary data.

To process record instances accurately with different layouts, you must apply

record selection criteria to the underlying data. If the selection criteria do not

match, records are skipped because they do not apply to the defined mapping.

Example: The following CREATE TABLE statements define the EMPLOYEE and

ADDRESS layouts above:

CREATE TABLE VSAM.EMPLOYEE_NAME DBTYPE VSAM

 DS "VSAMEMP.KSDS"

(

 RECORD_TYPE SOURCE DEFINITION

 DATAMAP OFFSET 0 LENGTH 1

 DATATYPE C

 USE AS CHAR(1),

 LAST_NAME SOURCE DEFINITION

 DATAMAP OFFSET 1 LENGTH 20

 DATATYPE C

 USE AS CHAR(20),

 FIRST_NAME SOURCE DEFINITION

 DATAMAP OFFSET 21 LENGTH 20

 DATATYPE C

 USE AS CHAR(20),

 DATE_OF_BIRTH SOURCE DEFINITION

 DATAMAP OFFSET 41 LENGTH 8

 DATATYPE UC

 USE AS CHAR(8),

 MONTHLY_SALARY SOURCE DEFINITION

 DATAMAP OFFSET 49 LENGTH 4

 DATATYPE P

 USE AS DECIMAL(7 , 2));

CREATE TABLE VSAM.EMPLOYEE_ADDRESS DBTYPE VSAM

 DS "VSAMEMP.KSDS"

(

 RECORD_TYPE SOURCE DEFINITION

 DATAMAP OFFSET 0 LENGTH 1

 DATATYPE C

 USE AS CHAR(1),

 ADDRESS_LINE_1 SOURCE DEFINITION

 DATAMAP OFFSET 1 LENGTH 30

 DATATYPE C

76 SQL Reference for Classic Federation and Classic Data Event Publishing

USE AS CHAR(30),

 ADDRESS_LINE_2 SOURCE DEFINITION

 DATAMAP OFFSET 31 LENGTH 30

 DATATYPE C

 USE AS CHAR(30),

 ADDRESS_CITY SOURCE DEFINITION

 DATAMAP OFFSET 61 LENGTH 20

 DATATYPE C

 USE AS CHAR(20),

 ADDRESS_STATE SOURCE DEFINITION

 DATAMAP OFFSET 81 LENGTH 2

 DATATYPE C

 USE AS CHAR(2),

 ADDRESS_ZIP SOURCE DEFINITION

 DATAMAP OFFSET 83 LENGTH 5

 DATATYPE UC

 USE AS CHAR(5));

Given the example, there are two choices in Classic federation:

Create two tables, each table mapping a different record layout

SQL queries or updates that are issued by client applications need to

contain a WHERE clause that selects only the proper record type for each

table mapped.

 For example, you can use a SELECT statement similar to the following

statement:

SELECT * FROM VEMPL_NAME WHERE RECORD_TYPE=’E’;

Create two tables and create a view on each table

 The following view creation statements apply selection logic for the table

mappings:

CREATE VIEW VEMPL_NAME AS

 SELECT * FROM EMPLOYEE_NAME WHERE RECORD_TYPE = ’E’;

CREATE VIEW VEMPL_ADDRESS AS

 SELECT * FROM EMPLOYEE_ADDRESS WHERE RECORD_TYPE = ’A’;

You can then use a SELECT statement like this:

SELECT * FROM VEMPL_NAME;

Given the example, there are two choices for change capture:

Create two tables and create a view on each table

 The following view creation statements apply selection logic for the table

mappings:

CREATE VIEW VEMPL_NAME AS

 SELECT * FROM EMPLOYEE_NAME WHERE RECORD_TYPE = ’E’;

CREATE VIEW VEMPL_ADDRESS AS

 SELECT * FROM EMPLOYEE_ADDRESS WHERE RECORD_TYPE = ’A’;

You have to then alter the views for change capture. When you create the

tables and views in the Classic Data Architect, the ALTER VIEW statements

are generated when you generate the DDL for the tables and views.

Create two tables and use the record selection exit CACRCSEL

For information about using CACRCSEL, see Record selection exit for

multiple record layouts.

Chapter 5. Views 77

http://publib.boulder.ibm.com/infocenter/iisclzos/v9r1/topic/com.ibm.websphere.ii.eventpub.cs.doc/configuring/iiyeccscfcscacresel.dita
http://publib.boulder.ibm.com/infocenter/iisclzos/v9r1/topic/com.ibm.websphere.ii.eventpub.cs.doc/configuring/iiyeccscfcscacresel.dita

Views and the query processor in Classic federation

When the query processor encounters a reference to a view in an SQL statement, it

finds the definition of the view in the database.

Then the query processor translates the request that references the view into an

equivalent request against the source tables of the view and carries out that

request. The query processor maintains the illusion of the view while the query

processor maintains the integrity of the source tables.

Advantages and disadvantages of views in Classic federation

Views provide a variety of benefits and can be useful for many types of databases.

In a personal computer database, views are usually a convenience, defined to

simplify requests to databases. In a production database installation, views can

play an important role in defining the structure of the database for users or groups

of users and can enforce the database security.

Views provide the following benefits:

v Built-in security: Gives each user permission to access the database only through

a small set of views that contain the specific data the user or group of users is

authorized to see, restricting user access to other data.

v Simplicity for queries: A view can draw data from several tables and present a

single table, simplifying the information and turning multi-table queries into

single-table queries for a view.

v Simplicity in structure: Views give users a specific view of the database

structure, presenting the database as a set of virtual tables specific to particular

users or groups of users.

v Stabilization of information: Views present a consistent, unchanged image of the

database structure, even if underlying source tables are changed.

Although there are many advantages to views, the main disadvantage to using

views rather than real tables is performance degradation. Because views only

create the appearance of a table, not a real table, the query processor must translate

queries against the view into queries against the underlying source tables. If the

view is defined by a complex, multi-table query, even simple queries against the

view become complicated joins that can take a long time to complete.

Joined views in Classic federation

One of the most frequent reasons for using views is to simplify multi-table queries.

Restriction: For change capture, you cannot use views that reference more than

one table.

By specifying a two-table or a three-table query in the view definition, you can

create a joined view. Joined views draw their data from two or three different

tables and present the query results as a single virtual table. After you define the

view, you can use a simple, single-table query against the view for requests that

otherwise require a two-or-more-table join.

78 SQL Reference for Classic Federation and Classic Data Event Publishing

Example

A user often runs queries against a particular table, such as the ORDERS table. The

user does not want to work with employee numbers, but wants a view of the

ORDERS table that has names instead of numbers. You can create the following

view:

CREATE VIEW ORDER_INFO (ORDER_NUM, COMPANY, REP_NAME, AMOUNT) AS

 SELECT ORDER_NUM, COMPANY, NAME, AMOUNT

 FROM ORDERS, CUSTOMERS, SALESREPS

 WHERE CUST = CUST_NUM

 AND REP = EMPL_NUM

This view is defined by a three-table join. As with a grouped view, processing

required to create this virtual table is substantial. Each row of the view is created

from a combination of one row from the ORDERS table, one row from the

CUSTOMERS table, and one row from the SALESREPS table.

Although this view has a complex definition, it can be very valuable. For example,

you can create the following query against this view:

SELECT REP_NAME, COMPANY SUM(AMOUNT)

 FROM ORDER_INFO

 GROUP BY REP_NAME, COMPANY

That query generates a report of orders that are grouped by salesperson:

REP_NAME COMPANY SUM(AMOUNT)

--

Bill Adams ACME Mfg. $35,582.00

Bob Burns JCP Inc. $24,343.00

Dan Jones First Corp. $75,000.00

This query is now a single-table SELECT statement, which is far simpler than the

original three-table query. Also, the view makes it easier to see the operations in

the query. The query processor, however, still must work harder to generate the

query results for this single-table query against the view as it would to generate

query results for the same three-table query. However, for the actual user, it is

much easier to write and understand a single-table query that references the view.

CREATE VIEW statement

You can create and manage DB2 views by using the Classic Data Architect, the

metadata utility, or any client that is connected to the data server.

Although most clients can create a view with standard SQL processing, the Classic

Data Architect is a more controlled mechanism for creating and managing views.

For this reason, use the Classic Data Architect to create views.

The data type, length, and other characteristics of the columns are derived from

the definition of the columns in the source tables.

The CREATE VIEW statement can be embedded in an application program or

issued interactively. The statement is an executable statement that can be

dynamically prepared.

Syntax diagram

Chapter 5. Views 79

�� CREATE VIEW view-name

�

,

(

column-name

)

 AS subselect ��

Parameters

view-name

Assigns a name to the view. The name cannot identify a table, view, alias, or

synonym that exists on the current server. The name can be a two-part name.

The authorization name that qualifies the name is the owner of the view.

column-name

Names the columns in the view. If you specify a list of column names, the list

must consist of as many names as there are columns in the result table of the

subselect. Each name must be unique and unqualified. If you do not specify a

list of column names, the columns of the view inherit the names of the

columns of the result table of the subselect.

 You must specify a list of column names if the result table of the subselect has

duplicate column names or an unnamed column (a column that is derived

from a constant, function, or expression that is not given a name by the AS

clause).

ASsubselect

Defines the view. At any time, the view consists of the rows that result if the

subselect is run. The subselect cannot refer to host variables or include

parameter markers (question marks).

 A query that contains either a UNION or an ORDER BY clause is not a valid

subselect.
 Related concepts

Classic Data Architect
The Classic Data Architect is the redesigned administrative tool introduced in

Version 9 that replaces the Classic Data Mapper.

ALTER VIEW statement

To use a view as a source for a publication in Classic event publishing or for a

subscription in Classic replication, you must alter the view to support change

capture.

Certain views might not be valid for change capture for your particular data

source.

Although most clients can create a view with standard SQL processing, the Classic

Data Architect is a more controlled mechanism for creating and managing views.

For this reason, use the Classic Data Architect to alter views.

Syntax diagram

�� ALTER VIEW view_name DATA CAPTURE CHANGES ;

NONE
 ��

80 SQL Reference for Classic Federation and Classic Data Event Publishing

http://publib.boulder.ibm.com/infocenter/iisclzos/v9r1/topic/com.ibm.websphere.ii.federation.classic.overview.doc/prod_overview/iiyfcstocda.dita

Parameters

view_name

Identifies the view for which the DATACAPTURE parameter is being altered.

The view-name can be a qualified or unqualified view name. If an unqualified

name is supplied, the view owner is obtained from the CURRENT SQLID

special register.

DATA CAPTURE

CHANGES

Turns data capture on for the view and stores a value of Y in the

DATACAPTURE column in the SYSIBM.SYSTABLES row for the view.

NONE

Turns data capture off and stores a space in the DATACAPTURE

column.

It is not an error to set the DATACAPTURE column to its existing value.

Additionally, regardless of referenced table type, the DATACAPTURE flag can also

be turned off even if the view definition is not eligible for data capture.

At least one of the following permissions is required to run the ALTER VIEW

statement:

v SYSADM

v DBADM for the database type of the table that is referenced in the view

v Ownership of the view being altered

The following restrictions apply to change capture for a view:

v The view cannot reference more than one table. This restriction includes tables in

the FROM clause or the WHERE clause as in the case of sub selects.

v The view cannot reference another view.

v The select list for the view must be ″SELECT *″.
 Related concepts

Classic Data Architect
The Classic Data Architect is the redesigned administrative tool introduced in

Version 9 that replaces the Classic Data Mapper.

DROP VIEW statement

To drop a view, you must use the DROP VIEW statement.

This statement provides detailed control over what happens when a user attempts

to drop a view when the definition of another view depends on it.

Example: Two views on the SALESREPS table are created by these CREATE VIEW

statements:

CREATE VIEW EASTREPS AS

 SELECT *

 FROM SALESREPS

 WHERE REP_OFFICE IN (11, 12, 13)

CREATE VIEW NYREPS AS

 SELECT *

 FROM EASTREPS

 WHERE REP_OFFICE = 11

Chapter 5. Views 81

http://publib.boulder.ibm.com/infocenter/iisclzos/v9r1/topic/com.ibm.websphere.ii.federation.classic.overview.doc/prod_overview/iiyfcstocda.dita

The following DROP VIEW statement removes both views as well as any views

that depend on their definition from the database:

DROP VIEW EASTREPS

The CASCADE and RESTRICT parameters are not directly supported in the DROP

VIEW syntax. However, the DROP VIEW deletes dependent views along with

those specified in the DROP VIEW.

 Related concepts

Classic Data Architect
The Classic Data Architect is the redesigned administrative tool introduced in

Version 9 that replaces the Classic Data Mapper.

82 SQL Reference for Classic Federation and Classic Data Event Publishing

http://publib.boulder.ibm.com/infocenter/iisclzos/v9r1/topic/com.ibm.websphere.ii.federation.classic.overview.doc/prod_overview/iiyfcstocda.dita

Accessing information about IBM

IBM® has several methods for you to learn about products and services.

You can find the latest information on the Web at www.ibm.com/software/data/
sw-bycategory/subcategory/SWB50.html

v Product documentation in PDF and online information centers

v Product downloads and fix packs

v Release notes and other support documentation

v Web resources, such as white papers and IBM Redbooks™

v Newsgroups and user groups

v Book orders

To access product documentation, go to this site:

publib.boulder.ibm.com/infocenter/iisclzos/v9r1/

You can order IBM publications online or through your local IBM representative.

v To order publications online, go to the IBM Publications Center at

www.ibm.com/shop/publications/order.

v To order publications by telephone in the United States, call 1-800-879-2755.

To find your local IBM representative, go to the IBM Directory of Worldwide

Contacts at www.ibm.com/planetwide.

Providing comments on the documentation

Please send any comments that you have about this information or other

documentation.

Your feedback helps IBM to provide quality information. You can use any of the

following methods to provide comments:

v Send your comments using the online readers’ comment form at

www.ibm.com/software/awdtools/rcf/.

v Send your comments by e-mail to comments@us.ibm.com. Include the name of

the product, the version number of the product, and the name and part number

of the information (if applicable). If you are commenting on specific text, please

include the location of the text (for example, a title, a table number, or a page

number).

© Copyright IBM Corp. 2007 83

http://www.ibm.com/software/data/sw-bycategory/subcategory/SWB50.html
http://www.ibm.com/software/data/sw-bycategory/subcategory/SWB50.html
http://publib.boulder.ibm.com/infocenter/iisclzos/v9r1/
http://www.ibm.com/planetwide
http://www.ibm.com/software/awdtools/rcf/

84 SQL Reference for Classic Federation and Classic Data Event Publishing

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in

other countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may

be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not grant you

any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785 U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing 2-31 Roppongi 3-chome, Minato-ku

Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law: INTERNATIONAL

BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION ″AS IS″

WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,

INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR

PURPOSE. Some states do not allow disclaimer of express or implied warranties in

certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements

and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those Web

sites. The materials at those Web sites are not part of the materials for this IBM

product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 2007 85

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the

information which has been exchanged, should contact:

IBM Corporation

J46A/G4

555 Bailey Avenue

San Jose, CA 95141-1003 U.S.A.

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this document and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement or any equivalent agreement

between us.

Any performance data contained herein was determined in a controlled

environment. Therefore, the results obtained in other operating environments may

vary significantly. Some measurements may have been made on development-level

systems and there is no guarantee that these measurements will be the same on

generally available systems. Furthermore, some measurements may have been

estimated through extrapolation. Actual results may vary. Users of this document

should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of

those products, their published announcements or other publicly available sources.

IBM has not tested those products and cannot confirm the accuracy of

performance, compatibility or any other claims related to non-IBM products.

Questions on the capabilities of non-IBM products should be addressed to the

suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change or

withdrawal without notice, and represent goals and objectives only.

This information is for planning purposes only. The information herein is subject to

change before the products described become available.

This information contains examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples include the

names of individuals, companies, brands, and products. All of these names are

fictitious and any similarity to the names and addresses used by an actual business

enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which

illustrate programming techniques on various operating platforms. You may copy,

modify, and distribute these sample programs in any form without payment to

IBM, for the purposes of developing, using, marketing or distributing application

programs conforming to the application programming interface for the operating

platform for which the sample programs are written. These examples have not

been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or

imply reliability, serviceability, or function of these programs.

86 SQL Reference for Classic Federation and Classic Data Event Publishing

Each copy or any portion of these sample programs or any derivative work, must

include a copyright notice as follows:

(C) (your company name) (year). Portions of this code are derived from IBM Corp.

Sample Programs. (C) Copyright IBM Corp. _enter the year or years_. All rights

reserved.

If you are viewing this information softcopy, the photographs and color

illustrations may not appear.

Trademarks

IBM trademarks and certain non-IBM trademarks are marked at their first

occurrence in this document.

See http://www.ibm.com/legal/copytrade.shtml for information about IBM

trademarks.

The following terms are trademarks or registered trademarks of other companies:

Java™ and all Java-based trademarks and logos are trademarks or registered

trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

Microsoft®, Windows®, Windows NT®, and the Windows logo are trademarks of

Microsoft Corporation in the United States, other countries, or both.

Intel®, Intel Inside® (logos), MMX and Pentium® are trademarks of Intel

Corporation in the United States, other countries, or both.

UNIX® is a registered trademark of The Open Group in the United States and

other countries.

Linux® is a trademark of Linus Torvalds in the United States, other countries, or

both.

Other company, product or service names might be trademarks or service marks of

others.

Notices 87

http://www.ibm.com/legal/copytrade.shtml

88 SQL Reference for Classic Federation and Classic Data Event Publishing

Index

A
ALTER TABLE statement

description 37, 60

examples of 37, 60

ALTER VIEW statement 80

authentication value 7

authorities 7

authorization requirements
SQL statements 64

authorizations
description 7

C
character string constants 12

COMMENT ON statement
description 15

comments on documentation 83

CREATE INDEX statement
description 34, 58

examples of 34, 58

CREATE TABLE statement
column definitions 24, 48

defining column options 48

defining column optons 24

description 17, 39

example of 17, 39

IMS 17

syntax diagram 39

CREATE VIEW statement 79

D
data records 31, 55

data types 9

character string 9

graphic strings 10

numeric 10

database management objects
IMS 17

database manager objects 6

database objects
SQL security 65

database privileges
SQL security 67

decimal constants 12

DELETE
see SQL DELETE 70

delimited
SQL 4

delimiter tokens 1

documentation
ordering 83

Web site 83

DROP statement
description 13

DROP VIEW statement 81

E
EBCDIC 1

elements
language 1

EXECUTE
see SQL EXECUTE 64

F
floating-point constants 12

G
GRANT

see SQL GRANT 64, 70

GRANT table and view privileges 70

graphic string constants 12

I
identifiers

delimited 3, 4

ordinary 3

INSERT
see SQL INSERT 64, 70

integer constants 12

L
legal notices 85

literals
description 12

N
naming conventions 6

numbers 10

numeric data types 10

O
ordinary tokens 1

P
parameter markers 3

privileges
database 7

SQL security
table and view 70

system 66

user 65, 66

user and stored procedure 69

Q
qualified object names 9

R
readers’ comment form 83

record typing
views 75

repeatable data 31, 55

requirements
authorization

SQL security 64

reserved words 4

REVOKE
see SQL REVOKE 70

REVOKE table and view privileges 70

S
SAF exit 72

security
SQL 63

authorization requirements 64

database objects 65

security 63

table and view privileges 70

user types 63

SELECT
see SQL SELECT 64, 70

SMF exit 72

source data types 9

SQL data types 1, 9

SQL DELETE 70

SQL EXECUTE 64

SQL GRANT 64, 70

SQL INSERT 64, 70

SQL REVOKE 70

SQL security 63, 72

authorization requirements 64

database objects 65

security 63

table and view privileges 70

user and database privileges 67

user types 63

SQL SELECT 64, 70

SQL statement 3

SQL statements
VSAM 39

SQL UPDATE 64, 70

SQL variable name identifier 3

stored procedure
privileges 69

strings 9, 10

syntax diagram
record arrays 31, 55

syntax diagrams
COMMENT ON statement 13

DROP statement 13

IMS 17

IMS statements 34, 37

VSAM statements 39, 58, 60

system exits 72

© Copyright IBM Corp. 2007 89

T
tokens

SQL language elements 1

trademarks 87

U
UPDATE

see SQL UPDATE 64, 70

user
privileges 66

users
privileges 65

SQL security 63

stored procedure privileges 69

V
views 75

advantages and disadvantages 78

ALTER VIEW statement 80

CREATE VIEW statement 79

DROP VIEW statement 81

joined views 78

query processor 78

record typing 75

90 SQL Reference for Classic Federation and Classic Data Event Publishing

����

Printed in USA

SC19-1128-00

	Contents
	Chapter 1. General information
	Language elements
	Characters
	Tokens
	SQL statement format
	SQL identifiers
	Reserved words

	Naming conventions
	Authorization IDs and authorization names
	Qualification of unqualified object names
	Data types
	Character string
	Graphic strings
	Numbers

	Constants

	General syntax diagrams
	DROP statement
	COMMENT ON statement

	Chapter 2. IMS
	CREATE TABLE statement for IMS
	Columns for IMS
	Record arrays for IMS
	CREATE INDEX statement for IMS
	ALTER TABLE statement for IMS

	Chapter 3. VSAM
	CREATE TABLE statement for VSAM
	Columns for VSAM
	Record arrays for VSAM
	CREATE INDEX statement for VSAM
	ALTER TABLE statement for VSAM

	Chapter 4. SQL security
	Overview of SQL security
	Authorization
	Authorization requirements for SQL statements
	Database objects in SQL security
	Defining user privileges
	System privileges
	Database privileges
	Stored procedure privileges
	Table and view privileges

	SAF and SMF system exits for SQL security

	Chapter 5. Views
	Record types and COBOL example
	Views and the query processor in Classic federation
	Advantages and disadvantages of views in Classic federation
	Joined views in Classic federation
	CREATE VIEW statement
	ALTER VIEW statement
	DROP VIEW statement

	Accessing information about IBM
	Providing comments on the documentation

	Notices
	Trademarks

	Index

